• Title/Summary/Keyword: Goats

Search Result 884, Processing Time 0.024 seconds

Detection of Anaplasma sp. in Korean Native Goats (Capra aegagrus hircus) on Jeju Island, Korea

  • Seong, Giyong;Han, Yu-Jung;Chae, Jeong-Byoung;Chae, Joon-Seok;Yu, Do-Hyeon;Lee, Young-Sung;Park, Jinho;Park, Bae-Keun;Yoo, Jae-Gyu;Choi, Kyoung-Seong
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.6
    • /
    • pp.765-769
    • /
    • 2015
  • Anaplasma species are obligate intracellular pathogens that can cause tick-borne diseases in mammalian hosts. To date, very few studies of their occurrence in Korean native goats (Capra aegagrus hircus) have been reported. In the present study, we investigated Anaplasma infection of Korean native goats on Jeju Island, Republic of Korea, and performed phylogenetic analysis based on the 16S rRNA gene sequences. Our results showed that Anaplasma infection was found mostly in adult female goats. The phylogenetic tree revealed that the 7 sequences identified in Korean native goats could belong to Anaplasma sp. and were distinct from A. marginale, A. centrale, and A. ovis. The results indicated that the sequences identified to belong to Anaplasma were closely related to sequences isolated from goats in China and were clustered within the same group. To our knowledge, this is the first study to detect Anaplasma sp. infection in Korean native goats.

NUTRITIONAL QUALITY OF WHOLE CROP CORN FORAGE ENSILED WITH CAGE LAYER MANURE. II. IN SITU DEGRADABILITY AND FERMENTATION CHARACTERISTICS IN THE RUMEN OF GOATS

  • Kim, J.H.;Yokota, H.;Ko, Y.D.;Okajima, T.;Ohshima, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.1
    • /
    • pp.53-59
    • /
    • 1993
  • In situ degradability and fermentation characteristics in the rumen of goats fed whole crop corn forage ensiled with (MS silage) or without (CS silage) 30% of cage layer manure (CLM) were investigated. The two silages were well preserved. To adjust nitrogen intake of CS silage to that of MS silage, the 3rd group of goats was given urea with CS silage at feeding time (US silage). Each goat was given a diet of 2% of the body weight (dry matter basis) daily. In situ degradability of dry matter (DM) and crude protein (CP) of MS silage in the rumen were higher than those of CS and US silages. Total potentially degradable portions of DM and CP in MS silage were also higher than those in CS and US silages. Blood urea nitrogen and rumen ammonia nitrogen concentration of goats fed US and MS silages were significantly (p<0.05) higher than those of goats fed CS silage. Acetic, propionic and butyric acids in ruminal fluids of goats fed MS silage were significantly (p<0.05) higher than those of goats fed CS and US silages.

Detecting Positive Selection of Korean Native Goat Populations Using Next-Generation Sequencing

  • Lee, Wonseok;Ahn, Sojin;Taye, Mengistie;Sung, Samsun;Lee, Hyun-Jeong;Cho, Seoae;Kim, Heebal
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.862-868
    • /
    • 2016
  • Goats (Capra hircus) are one of the oldest species of domesticated animals. Native Korean goats are a particularly interesting group, as they are indigenous to the area and were raised in the Korean peninsula almost 2,000 years ago. Although they have a small body size and produce low volumes of milk and meat, they are quite resistant to lumbar paralysis. Our study aimed to reveal the distinct genetic features and patterns of selection in native Korean goats by comparing the genomes of native Korean goat and crossbred goat populations. We sequenced the whole genome of 15 native Korean goats and 11 crossbred goats using next-generation sequencing (Illumina platform) to compare the genomes of the two populations. We found decreased nucleotide diversity in the native Korean goats compared to the crossbred goats. Genetic structural analysis demonstrated that the native Korean goat and cross-bred goat populations shared a common ancestry, but were clearly distinct. Finally, to reveal the native Korean goat's selective sweep region, selective sweep signals were identified in the native Korean goat genome using cross-population extended haplotype homozygosity (XP-EHH) and a cross-population composite likelihood ratio test (XP-CLR). As a result, we were able to identify candidate genes for recent selection, such as the CCR3 gene, which is related to lumbar paralysis resistance. Combined with future studies and recent goat genome information, this study will contribute to a thorough understanding of the native Korean goat genome.

Grazing Behavior and Forage Selection of Goats (Capra hircus)

  • Lee, Sang-Hoon;Lee, Jinwook;Chowdhury, M.M.R.;Jeon, Dayeon;Lee, Sung-Soo;Kim, Seungchang;Kim, Do Hyung;Kim, Kwan-Woo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.189-194
    • /
    • 2019
  • The normal feeding approach of goats might be due to their precise anatomical and physiological characteristics of entity, which permit them to be highly selective, to eat legume silages and wild green grass. This review has been designed to consider the grazing behavior, fodder selection, and feed composition of goats. Various herbs and corns consumed by goats have numerous nutritive resources. Based on the general herbaceous intake activities and behavior of goats, they prefer wild grass such as grass grown in the steep hills than soft grass. Because the digestion capacity of cellulose feed has higher digestion level compared to other non-ruminants within rumen and it is advantageous to use wild forest or mountain grass which comprises high proportion of cellulose feed for goat. In South Korea, there are abundant feed resources for goats because of occupying large areas of mountains. Thus, goat production and feeding costs could be reduced if plants are used from the wild forest as a feed for goats relative to grassland grazing. Also, it is expected to contribute in improvement of goat farming with harmonious relationship between the grassland and wild forest while satisfying animal welfare and physiological desires of livestock.

The effect of dietary ions difference on drinking and eating patterns in dairy goats under high ambient temperature

  • Nguyen, Thiet;Chanpongsang, Somchai;Chaiyabutr, Narongsak;Thammacharoen, Sumpun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.599-606
    • /
    • 2019
  • Objective: The present study was carried out to evaluate the effect of high dietary cation and anion difference (DCAD) rations on diurnal variations in eating and meal patterns, water intake and urination patterns in dairy goats fed under high ambient temperature (HTa). Methods: Ten crossbred dairy goats during peri-parturition period were selected and divided into two groups of five animals each. Experimental diets were control DCAD (control, 22.8 mEq/100 g dry matter [DM]) and high DCAD (DCAD, 39.1 mEq/100 g DM). The composition of two diets consisted of 44% corn silage and 56% concentrate. From the 2nd week to 8th week postpartum, goats were fed ad libitum twice daily either with the control or DCAD total mix ration with free access to water. The spontaneous eating and drinking patterns were determined. Results: The environmental conditions in the present experiment indicated that goats were fed under HTa conditions (average peak THI = 85.2) and were in heat stress. In addition to the typical HTa induced tachypnoea in both groups, the respiratory rate in the DCAD group was significantly higher than the control group (p<0.05). Although the goats from both groups showed comparable level of eating, drinking and urination during experiment, the meal pattern and water intake were different. High DCAD apparently increased eating and meal patterns compared with the control. At week 8 postpartum, goats from high DCAD group had significant (p<0.05) bigger meal size and longer meal duration. Moreover, high DCAD appeared to increase night-time water intake (p<0.05). Conclusion: Both meal pattern and night-time drinking effects of DCAD suggested that feeding with high DCAD ration may alleviate the effect of heat stress in dairy goat fed under HTa conditions.

Mitochondrial DNA variation and phylogeography of native Mongolian goats

  • Ganbold, Onolragchaa;Lee, Seung-Hwan;Paek, Woon Kee;Munkhbayar, Munkhbaatar;Seo, Dongwon;Manjula, Prabuddha;Khujuu, Tamir;Purevee, Erdenetushig;Lee, Jun Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.902-912
    • /
    • 2020
  • Objective: Mongolia is one of a few countries that supports over 25 million goats, but genetic diversity, demographic history, and the origin of goat populations in Mongolia have not been well studied. This study was conducted to assess the genetic diversity, phylogenetic status and population structure of Mongolian native goats, as well as to discuss their origin together with other foreign breeds from different countries using hypervariable region 1 (HV1) in mtDNA. Methods: In this study, we examined the genetic diversity and phylogenetic status of Mongolian native goat populations using a 452 base-pair long fragment of HVI of mitochondrial DNA from 174 individuals representing 12 populations. In addition, 329 previously published reference sequences from different regions were included in our phylogenetic analyses. Results: Investigated native Mongolian goats displayed relatively high genetic diversities. After sequencing, we found a total of 109 polymorphic sites that defined 137 haplotypes among investigated populations. Of these, haplotype and nucleotide diversities of Mongolian goats were calculated as 0.997±0.001 and 0.0283±0.002, respectively. These haplotypes clearly clustered into four haplogroups (A, B, C, and D), with the predominance of haplogroup A (90.8%). Estimates of pairwise differences (Fst) and the analysis of molecular variance values among goat populations in Mongolia showed low genetic differentiation and weak geographical structure. In addition, Kazakh, Chinese (from Huanghuai and Leizhou), and Arabian (Turkish and Baladi breeds) goats had smaller genetic differentiation compared to Mongolian goats. Conclusion: In summary, we report novel information regarding genetic diversity, population structure, and origin of Mongolian goats. The findings obtained from this study reveal that abundant haplogroups (A to D) occur in goat populations in Mongolia, with high levels of haplotype and nucleotide diversity.

Effects of Condensed Tannins in Mao (Antidesma thwaitesianum Muell. Arg.) Seed Meal on Rumen Fermentation Characteristics and Nitrogen Utilization in Goats

  • Gunun, P.;Wanapat, M.;Gunun, N.;Cherdthong, A.;Sirilaophaisan, S.;Kaewwongsa, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1111-1119
    • /
    • 2016
  • Mao seed is a by-product of the wine and juice industry, which could be used in animal nutrition. The current study was designed to determine the effect of supplementation of mao (Antidesma thwaitesianum Muell. Arg.) seed meal (MOSM) containing condensed tannins (CT) on rumen fermentation, nitrogen (N) utilization and microbial protein synthesis in goats. Four crossbred (Thai Native${\times}$Anglo Nubian) goats with initial body weight (BW) $20{\pm}2kg$ were randomly assigned to a $4{\times}4$ Latin square design. The four dietary treatments were MOSM supplementation at 0%, 0.8%, 1.6%, and 2.4% of total dry matter (DM) intake, respectively. During the experimental periods, all goats were fed a diet containing roughage to concentrate ratio of 60:40 at 3.0% BW/d and pangola grass hay was used as a roughage source. Results showed that supplementation with MOSM did not affect feed intake, nutrient intakes and apparent nutrient digestibility (p>0.05). In addition, ruminal pH and ammonia nitrogen ($NH_3$-N) were not influenced by MOSM supplementation, whilst blood urea nitrogen was decreased quadraticly (p<0.05) in goats supplemented with MOSM at 2.4% of total DM intake. Propionate was increased linearly with MOSM supplementation, whereas acetate and butyrate were remained the same. Moreover, estimated ruminal methane ($CH_4$) was decreased linearly (p<0.05) when goats were fed with MOSM at 1.6% and 2.4% of total DM intake. Numbers of bacteria and protozoa were similar among treatments (p>0.05). There were linear decreases in urinary N (p<0.01) and total N excretion (p<0.01) by MOSM supplementation. Furthermore, N retention was increased linearly (p<0.05) when goats were fed with MOSM supplementation at 1.6% and 2.4% of total DM intake. Microbial protein synthesis were not significantly different among treatments (p>0.05). From the current study, it can be concluded that supplementation of MOSM at 1.6% to 2.4% of total DM intake can be used to modify ruminal fermentation, especially propionate and N utilization in goats, without affecting the nutrient digestibility, microbial populations and microbial protein synthesis.

Conjugated Linoleic Acid in Rumen Fluid and Milk Fat, and Methane Emission of Lactating Goats Fed a Soybean Oil-based Diet Supplemented with Sodium Bicarbonate and Monensin

  • Li, X.Z.;Yan, C.G.;Long, R.J.;Jin, G.L.;Shine Khuu, J.;Ji, B.J.;Choi, S.H.;Lee, H.G.;Song, Man K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1521-1530
    • /
    • 2009
  • A metabolic study was conducted with four ruminally-cannulated lactating goats (Saanen, 29 weeks lactation, 65${\pm}$5 kg) in a 4${\times}$4 Latin square design with 4 dietary treatments. The goats were fed a basal mixed diet consisting of 80% concentrate and 20% chopped rye grass hay (DM basis, CON). The goats were also fed the CON diet supplemented with soybean oil at a 5% level of the concentrate (SO), the SO diet supplemented with 0.5% of sodium bicarbonate (SO-B) or the SO-B diet supplemented with 30 ppm monensin (SO-BM). The goats were housed in individual pen and the study was conducted for 8 weeks. An increased molar proportion of propionate (C3) was observed at 1 h (p<0.003) and 6 h (p<0.029) post-feeding from all the supplemented diets. Calculated methane emission was markedly decreased prior to morning feeding (p<0.01), and at 1 h (p<0.05) and 6 h post-feeding (p<0.05) in goats fed the supplemented diets. All the supplements increased (p<0.0001) cis9, trans11-CLA content in rumen fluid. Concentrations of both cis9, trans11-CLA (p<0.0001) and trans10, cis12-CLA (p<0.026) were also increased in the milk fat of lactating goats fed the supplemented diets. The SO-B and SO-BM diets further increased CLA content in goat milk compared to the SO diet. All supplements increased unsaturated (UFA, p<0.002), monounsaturated (MUFA, p<0.002) and polyunsaturated fatty acids (p<0.014) and reduced SFA to UFA ratio (p<0.023). The concentration of MUFA was even greater (p<0.002) for SO-BM than for the SO-B diet. In conclusion, feeding soybean oil (5% of concentrate) to lactating goats was a useful way to improve milk fat and to improve fatty acid profile in the milk by increasing potentially healthy fatty acids such as CLA. Supplementation of sodium bicarbonate or sodium bicarbonate with monensin to the soybean oil-based diet increased CLA content further in goat milk. Supplementation of soybean oil may be an effective method to reduce methane emission in lactating goats.

Utilization of Sorghum Forage, Millet Forage, Veldt Grass and Buffel Grass by Tswana Sheep and Goats when Fed Lablab purpureus L. as Protein Supplement

  • Aganga, A.A.;Autlwetse, M.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1127-1132
    • /
    • 2000
  • Forty yearling Tswana sheep and goats (20 sheep and 20 goats) of both sexes were used in a feeding trial conducted in Botswana College of Agriculture (B.C.A) Content Farm in Gaborone for three months. The animals were randomized into four treatment groups of five animals per species balancing for weight and sex such that average initial weights were not statistically different. The sheep and goats were individually housed and fed under a common roof. All the animals were fed on Lablab purpureus L. as a protein supplement which was 40% of the ration. In addition to L.purpureus L. the control groups of both species were fed on 60% Cenchrus ciliaris L. as basal diet. The other three treatment groups were fed on different forages namely; sorghum forage (Sorghum sudanense (Piper) Stapf), millet forage (Pearl millet, Pennisetum typhoides (Burm.) Stapf and Hubb.) and veldt grass mainly Urochloa mosambicensis (Hack.) as basal diet (60%). Water was provided individually to all the animals on ad lib. basis. Daily intakes of feed and water were recorded and weighing of the animals was done every two weeks. The collected data were analysed statistically for differences. Average daily weight gain by Tswana sheep was significantly different (p<0.05), sheep fed on millet forage had a higher daily weight gain $(120.24{\pm}8.91g)$ compared with sheep fed on veldt grass $(92.86{\pm}6.94g)$. Treatment effects on daily total DM intake by sheep were significant, the control group (C. ciliaris L.) had higher intake $(705.77{\pm}10.22g)$ and those fed on sorghum forage had the least intake $(668.10{\pm}10.70g)$. There was no significant difference (p>0.05) in the average daily weight gain by Tswana goats and it was 84.52, 73.81, 83.33 and 78.57 g for goats fed on C. ciliaris L., sorghum forage, millet forage and veldt grass respectively. Average daily total DM intake by goats was 655.27, 652.64, 650.07 and 650.94 g for C. ciliaris L., sorghum forage, millet forage and veldt grass respectively. Feed conversion efficiency was 8.00, 8.98, 7.93 and 8.34 for goats fed on C. ciliaris L., sorghum forage, millet forage and veldt grass respectively and were not significantly different (p>0.05).

Effects of dietary forage-to-concentrate ratio on nutrient digestibility and enteric methane production in growing goats (Capra hircus hircus) and Sika deer (Cervus nippon hortulorum)

  • Na, Youngjun;Li, Dong Hua;Lee, Sang Rak
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.967-972
    • /
    • 2017
  • Objective: Two experiments were conducted to determine the effects of forage-to-concentrate (F:C) ratio on the nutrient digestibility and enteric methane ($CH_4$) emission in growing goats and Sika deer. Methods: Three male growing goats (body weight $[BW]=19.0{\pm}0.7kg$) and three male growing deer ($BW=19.3{\pm}1.2kg$) were respectively allotted to a $3{\times}3$ Latin square design with an adaptation period of 7 d and a data collection period of 3 d. Respiration-metabolism chambers were used for measuring the enteric $CH_4$ emission. Treatments of low (25:75), moderate (50:50), and high (73:27) F:C ratios were given to both goats and Sika deer. Results: Dry matter (DM) and organic matter (OM) digestibility decreased linearly with increasing F:C ratio in both goats and Sika deer. In both goats and Sika deer, the $CH_4$ emissions expressed as g/d, g/kg $BW^{0.75}$, % of gross energy intake, g/kg DM intake (DMI), and g/kg OM intake (OMI) decreased linearly as the F:C ratio increased, however, the $CH_4$ emissions expressed as g/kg digested DMI and OMI were not affected by the F:C ratio. Eight equations were derived for predicting the enteric $CH_4$ emission from goats and Sika deer. For goat, equation 1 was found to be of the highest accuracy: $CH_4(g/d)=3.36+4.71{\times}DMI(kg/d)-0.0036{\times}neutral$ detergent fiber concentrate (NDFC,g/kg)+$0.01563{\times}dry$ matter digestibility (DMD,g/kg)-$0.0108{\times}neutral$ detergent fiber digestibility (NDFD, g/kg). For Sika deer, equation 5 was found to be of the highest accuracy: $CH_4(g/d)=66.3+27.7{\times}DMI(kg/d)-5.91{\times}NDFC(g/kg)-7.11{\times}DMD(g/kg)+0.0809{\times}NDFD(g/kg)$. Conclusion: Digested nutrient intake could be considered when determining the $CH_4$ generation factor in goats and Sika deer. Finally, the enteric $CH_4$ prediction model for goats and Sika deer were estimated.