• Title/Summary/Keyword: GnRH (gonadotropin-releasing hormone)

Search Result 130, Processing Time 0.03 seconds

Cotreatment with Growth Hormone in Controlled Ovarian Hyperstimulation for IVF in Women with Limited Ovarian Reserve (체외수정시술을 위한 성선자극호르몬 과배란유도에 Limited Ovarian Reserve를 갖는 환자에서 성장호르몬의 사용)

  • Kim, Sun-Haeng;Chang, Ki-Hoon;Ku, Pyoung-Sahm
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.21 no.3
    • /
    • pp.241-245
    • /
    • 1994
  • Despite increasing success rate of IVF, poor response to ovarian stimulation remains a problem. So, attempts to improve ovarian responses, for example, by using combined gonadotropin-releasing hormone analogue(GnRH-a) and human menopausal gonadotropin(hMG) have shown limited success. It is reported that response of granulosa cells in vitro to FSH is stimulated by co-incubation with IGF-l, and IGF-l production can be increased by growth hormone. This suggest that combination regimen of G.H. and hMG may augment follicle recruitment. In fifteen patients who had previous history of poor ovarian response to gonadotropin stimulation after pituitary suppression with mid -luteal GnRH-a, the effectiveness of cotreatment with G.H. in IVF program was evaluated using a combination regimen of G.R. and hMG at Korea University Hospital IVF Clinic. Ovarian responses to gonadotropin stimulation in control and GH-treated cycles assessed by total dose and duration of hMG treatment, follicular development and peak $E_2$ level, number of eggs retrieved, and fertilization rates were also assessed. In each group, serum and follicular fluid IGF-1 concentrations on day of egg collection were measured by RIA after acidification and extraction by reveresed phase chromatography. Patients receiving G.H. required fewer days and ampules of gonadotropins, developed more oocytes, and more embryos transferred. But, the differences were not statistically significant, except the duration of hMG treatment. Our data showed a significantly higher concentration of IGF-l in the serum, not in the follicular fluid, of patients treated with G.H. compared with control group. These data suggest that growth hormone treatment does not improve the ovarian response in women with limited ovarian reserve to gonadotropin stimulation for IVF.

  • PDF

Regulation of Luteinizing Hormone Release and Subunit mRNA by GnRH and Ovarian Steroids in Cultured Anterior Pituitary Cells (흰쥐 뇌하수체전엽 배양세포에서 GnRH 및 난소호르몬에 의한 $LH{\beta}$ subunit 유전자 발현 조절에 관한 연구)

  • Kim, Chang-Mee;Park, Il-Sun;Ryu, Kyung-Za
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.19-28
    • /
    • 1994
  • The effects of gonadoropin-releasing hormone (GnRH) and ovarian steroid hormones on the release of luteinizing hormone (LH) and its subunit mRNA levels were investigated in anterior pituitary cells in culture. LH concentration was measured by a specific radioimmunoassay and mRNA levels of u and $LH{\beta}$ subunits by RNA slot blot hybridization assay. GnRH stimulated LH release in a dose-dependent manner from cultured pituitary cells. However, the basal LH release in the absence of GnRH was not changed during the course of 24h culture, strongly suggesting that release of LH is directly controlled by GnRH. The treatment of the pituitary cells with GnRH increased $LH{\beta}$ subunit mRNA levels in a dose-dependent manner, reaching the maximum with $2\;{\times}\;10^{-10}M$ GnRH while no significant increase in ${\alpha}$ subunit mRNA levels was observed after GnRH treatment. Estradiol did not augment GnRH-induced LH release while progesterone augmented GnRH-induced LH release in a dose-dependent manner at the level of pituitary. However, estradiol and progesterone increased basal and GnRH-induced $LH{\beta}$ subunit mRNA levels in a dose-dependent manner. The treatment of estrogen antagonist, LYI17018 blocked the effect of estradiol on GnRH-induced $LH{\beta}$ subunit mRNA levels in a dose-dependent manner while progesterone antagonist, Ru486 tended to block the effect of progesterone on GnRH-induced $LH{\beta}$ subunit mRNA levels. It is therefore suggested that GnRH Playa a major role in LH release and subunit biosynthesis by influencing the steady state $LH{\beta}$ subunit mRNA loves and ovarian steroid hormones modulate subunit biosynthesis via directly acting on pituitary gonadotropes.

  • PDF

Efficacy of corifollitropin alfa followed by recombinant follicle-stimulating hormone in a gonadotropin-releasing hormone antagonist protocol for Korean women undergoing assisted reproduction

  • Park, Hyo Young;Lee, Min Young;Jeong, Hyo Young;Rho, Yong Sook;Song, Sang Jin;Choi, Bum-Chae
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.2
    • /
    • pp.62-66
    • /
    • 2015
  • Objective: To evaluate the effect of a gonadotropin-releasing hormone (GnRH) antagonist protocol using corifollitropin alfa in women undergoing assisted reproduction. Methods: Six hundred and eighty-six in vitro fertilization-embryo transfer (IVF)/ intracytoplasmic sperm injection (ICSI) cycles were analyzed. In 113 cycles, folliculogenesis was induced with corifollitropin alfa and recombinant follicle stimulating hormone (rFSH), and premature luteinizing hormone (LH) surges were prevented with a GnRH antagonist. In the control group (573 cycles), premature LH surges were prevented with GnRH agonist injection from the midluteal phase of the preceding cycle, and ovarian stimulation was started with rFSH. The treatment duration, quality of oocytes and embryos, number of embryo transfer (ET) cancelled cycles, risk of ovarian hyperstimulation syndrome (OHSS), and the chemical pregnancy rate were evaluated in the two ovarian stimulation protocols. Results: There were no significant differences in age and infertility factors between treatment groups. The treatment duration was shorter in the corifollitropin alfa group than in the control group. Although not statistically significant, the mean numbers of matured (86.8% vs. 85.1%) and fertilized oocytes (84.2% vs. 83.1%), good embryos (62.4% vs. 60.3%), and chemical pregnancy rates (47.2% vs. 46.8%) were slightly higher in the corifollitropin alfa group than in the control group. In contrast, rates of ET cancelled cycles and the OHSS risk were slightly lower in the corifollitropin alfa group (6.2% and 2.7%) than in the control group (8.2% and 3.5%), although these differences were also not statistically significant. Conclusion: Although no significant differences were observed, the use of corifollitropin alfa seems to offer some advantages to patients because of its short treatment duration, safety, lower ET cancellation rate and reduced risk of OHSS.

Effects of Fasting on Brain Expression of Kiss2 and GnRH I and Plasma Levels of Sex Steroid Hormones, in Nile Tilapia Oreochromis niloticus (절식이 나일 틸라피아 Oreochromis niloticus의 Kiss2, GnRH I mRNA 발현 및 성 스테로이드 호르몬 농도에 미치는 영향)

  • Park, Jin Woo;Kwon, Joon Yeong;Jin, Ye Hwa;Oh, Sung-Yong
    • Ocean and Polar Research
    • /
    • v.38 no.1
    • /
    • pp.81-88
    • /
    • 2016
  • In many fish species, including Nile tilapia (Oreochromis niloticus), gonadal development occurs at the expense of stored energy and nutrients. Therefore, reproductive systems are inhibited by limited food supply. It has been well established that reproductive function is highly sensitive to both metabolic status and energy balance. Nothing is known about the possible mediated connection between energy balance and reproduction. Kisspeptin, a neuropeptide product of the Kiss gene has emerged as an essential gatekeeper of reproduction and may be possibly be linked to energy balance and reproduction in non-mammalians. Thus, in this study, the effect of fasting (10 days) on the expression of kisspeptin and the gonadotropin-releasing hormone (GnRH) gene were assessed in Nile tilapia (male and female) using qRT-PCR. In addition, plasma levels of estradiol-$17{\beta}$ ($E_2$) and 11-ketotestosterone (11-KT) in adult tilapia were measured by ELISA. In male tilapia, fasting reduced Kiss2 and GnRH I mRNA expression in the brain and 11-KT level in comparison with the fed tilapia (p < 0.05). In females, however, there were no significant differences in GnRH I mRNA expression and $E_2$ between fish subjected to fasting and those fed (p > 0.05). These data indicate the impact of nutritional states on kisspeptin as a potential regulatory mechanism for the control of reproduction in male Nile tilapia.

Effects of Different Light Spectra on the Oocyte Maturation in Grass Puffer Takifugu niphobles

  • Choi, Song-Hee;Kim, Byeong-Hoon;Hur, Sung-Pyo;Lee, Chi-Hoon;Lee, Young-Don
    • Development and Reproduction
    • /
    • v.22 no.2
    • /
    • pp.175-182
    • /
    • 2018
  • In order to examine the effects of four different light spectra (white, red, green, and blue) on the oocyte maturation, the change of reproductive parameters, via brain-pituitary-gonad (BPG) axis in grass puffer, were investigated. After exposure four different light spectra for 7 weeks, the abundance of gonadotropin-releasing hormone (GnRH) mRNA which is a type of seabream (sbGnRH) and two different subunit of gonadotropin hormones mRNAs, follicle-stimulating hormone ($fsh{\beta}$) mRNA and luteinizing hormone ($lh{\beta}$) mRNA, were analyzed in the brain and pituitary. Histological analysis showed that the mature oocyte ratio in the green spectrum was higher than other light spectra-exposed groups. Gonadosomatic index (GSI) and oocyte developmental stage were also investigated in the gonad based on histological observations. GSI value with the presence of yolk stage oocytes was significantly increased in the green spectrum-exposed group when compared to that of the other light-exposed groups (white, red, and blue) (p<0.05). The abundances of sbGnRH mRNA and $fsh{\beta}$ mRNA in the green spectrum-exposed group were also significant higher than those of the other light spectra-exposed groups (p<0.05). These results indicate that the maturation of oocyte in grass puffer can be accelerated by exposure to the spectrum of green. To better understand the molecular mechanism for the maturation of oocyte in grass puffer, further study examining the relationship between oocyte development and its related genes is required.

Effect of a dual trigger on oocyte maturation in young women with decreased ovarian reserve for the purpose of elective oocyte cryopreservation

  • Kim, Se Jeong;Kim, Tae Hyung;Park, Jae Kyun;Eum, Jin Hee;Lee, Woo Sik;Lyu, Sang Woo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.4
    • /
    • pp.306-311
    • /
    • 2020
  • Objective: The aim of this study was to determine whether co-administration of a gonadotropin-releasing hormone (GnRH) agonist and human chorionic gonadotropin (hCG) for final oocyte maturation improved mature oocyte cryopreservation outcomes in young women with decreased ovarian reserve (DOR) compared with hCG alone. Methods: Between January 2016 and August 2019, controlled ovarian stimulation (COS) cycles in women (aged ≤35 years, anti-Müllerian hormone [AMH] <1.2 ng/mL) who underwent elective oocyte cryopreservation for fertility preservation were retrospectively analyzed. Results: A total of 76 COS cycles were triggered with a GnRH agonist and hCG (the dual group) or hCG alone (the hCG group). The mean age and serum AMH levels were comparable between the two groups. The duration of stimulation, total dose of follicle-stimulating hormone used, and total number of oocytes retrieved were similar. However, the number of mature oocytes retrieved and the oocyte maturation rate were significantly higher in the dual group than in the hCG group (p=0.010 and p<0.001). After controlling for confounders, the dual-trigger method remained a significant factor related to the number of mature oocytes retrieved (p=0.016). Conclusion: We showed improved mature oocyte collection and maturation rate with the dual triggering of oocyte maturation in young women with DOR. A dual trigger appears to be more beneficial than hCG alone in terms of mature oocyte cryopreservation for young women with DOR.

Changes of Sexual Behaviors in Rapamycin-injected Cichlid Fish Astatotilapia burtoni Males

  • Kim, Tae Ha;Sohn, Young Chang
    • Development and Reproduction
    • /
    • v.20 no.3
    • /
    • pp.267-274
    • /
    • 2016
  • Cichlid fish species exhibit characteristic sexual behaviors according to not only reproductive stages but also social status. In a reproductive season, Astatotilapia burtoni males compete for females and a small number of dominant winners finally obtain the chance of spermiation. In addition to the characteristic behaviors, the dominant males have relatively bigger gonadotropin-releasing hormone 1 (GnRH1) neurons in the preoptic area (POA) of brain compared to those of subordinate males. Although the stimulatory effect of GnRH1 in vertebrate reproduction is well established, little is known about the triggering signal pathway to control GnRH1 neurons and GnRH1-mediated sexual behavior. In the present study, we evaluated the potential effect of TOR inhibitor rapamycin in relation to the cichlid male behaviors and GnRH1 neuron. After 14 h and 26 h of intraventricular injection of rapamycin, behavior patterns of chasing and courtship display did not show significant changes between rapamycin- and DMSO-injected males. Behaviors of spawning site entry increased in rapamycin-injected fish at 26 h post-injection than at 14 h post-injection significantly (P<0.05). Meanwhile, there was a tendency that GnRH1 neurons' soma size in the POA shrank by rapamycin injection, whereas the testes did not show notable changes. Taken together, these results suggest the possible role of TOR signal on GnRH1-mediated sexual behavior in cichlid dominant males, although further biological characterization of the TOR signaling pathway will be required to clarify this matter.

Early gonadotropin-releasing hormone antagonist start improves follicular synchronization and pregnancy outcome as compared to the conventional antagonist protocol

  • Park, Chan Woo;Hwang, Yu Im;Koo, Hwa Seon;Kang, Inn Soo;Yang, Kwang Moon;Song, In Ok
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.41 no.4
    • /
    • pp.158-164
    • /
    • 2014
  • Objective: To assess whether an early GnRH antagonist start leads to better follicular synchronization and an improved clinical pregnancy rate (CPR). Methods: A retrospective cohort study. A total of 218 infertile women who underwent IVF between January 2011 and February 2013. The initial cohort (Cohort I) that underwent IVF between January 2011 and March 2012 included a total of 68 attempted IVF cycles. Thirty-four cycles were treated with the conventional GnRH antagonist protocol, and 34 cycles with an early GnRH antagonist start protocol. The second cohort (Cohort II) that underwent IVF between June 2012 and February 2013 included a total of 150 embryo-transfer (ET) cycles. Forty-three cycles were treated with the conventional GnRH antagonist protocol, 34 cycles with the modified early GnRH antagonist start protocol using highly purified human menopause gonadotropin and an addition of GnRH agonist to the luteal phase support, and 73 cycles with the GnRH agonist long protocol. Results: The analysis of Cohort I showed that the number of mature oocytes retrieved was significantly higher in the early GnRH antagonist start cycles than in the conventional antagonist cycles (11.9 vs. 8.2, p=0.04). The analysis of Cohort II revealed higher but non-significant CPR/ET in the modified early GnRH antagonist start cycles (41.2%) than in the conventional antagonist cycles (30.2%), which was comparable to that of the GnRH agonist long protocol cycles (39.7%). Conclusion: The modified early antagonist start protocol may improve the mature oocyte yield, possibly via enhanced follicular synchronization, while resulting in superior CPR as compared to the conventional antagonist protocol, which needs to be studied further in prospective randomized controlled trials.