• Title/Summary/Keyword: Glycosidase activity

Search Result 60, Processing Time 0.035 seconds

Inhibitory Effect of Silkworm Urine on the Rat Intestinal Glycosidase (잠뇨의 흰쥐 소장내 glycosidase 저해활성)

  • 송주경;정성현
    • Biomolecules & Therapeutics
    • /
    • v.6 no.3
    • /
    • pp.242-246
    • /
    • 1998
  • The inhibitory activities of Amberlite active fraction, which was obtained from methanol soluble fraction of freeze dried slikworm urine, on the rat intestinal glycosidase-catalyzed enzymatic reaction were examined in in viro and in vivo experiments. Amberlite active fraction showed significant inhibitory effects on the hydrolysis of o-glycosidic bond, especially $\alpha$-1,4 bond. On the other hand, the inhibition on the hydrolysis of $\beta$-glycosidic bond was very weak. Oral administration of Amberlite active fraction resulted in a dose-dependent decrease in the blood glucose after an oral maltose load, and postprandial hyperglycemia in carbohydrate-loaded mice was suppressed by Amberlite active fraction at 60 mgHg in decreasing order of maltose, starch, sucrose and lactose. 60 mg/kg of Amberlite active fraction lowered the blood glucose level markedly after 18, 35, and 60 min after an oral maltose load and the antihyperglycemic activity was maintained upto 90 min. In alloxan-induced hyperglycemic mice, Amberlite active fraction at a dose of 100 mg/kg also significantly lowered blood glucose after an oral maltose load, and its efficacy was almost equivalent to that of acarbowe.

  • PDF

Isolation and Identification of Thermostable \beta-glycosidase-producing Microorganism from Hot Spring of Volcanic Area at Atagawa in Japan. (일본의 Atagawa 온천지대에서 분리한 내열성 \beta-glycosidase 생성균주의 분리 및 동정)

  • 남은숙;최종우;차성관;안종건
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.2
    • /
    • pp.151-156
    • /
    • 2002
  • This study was performed to obtain the thermostable $\beta$-glycosidase producing bacteria from hot spring of volcanic area at Atagawa in Japan. KNOUC 202 was selected because it showed thermostable $\beta$-glycosidase activity in sodium phosphate buffer(pH 6.8) at $70^{\circ}C$ for 4h, and it was identified. The strain was aerobic, asporogenic bacilli, immobile, gram negative, catalase positive, oxidase positive, and pigment-producing. Optimum growth was at $70~72^{\circ}C$, pH 7.0~7.2, and it could grow in the presence of 3% NaCl. The main fatty acids in cell were iso-15:0 and iso-l7:0. 16S rRNA sequence of KNOUC 202 showed 99.9% similarity with that of Thermus thermophilus ATCC 27634(HB8). Based on morphological, physiological, biochemical characteristics, cellular fatty acids profile and 16S rRNA sequence analysis, KNOUC 202 was identified as Thermus thermophilus.

Mutational Analysis of Thermus caldophilus GK24 ${\beta}$-Glycosidase: Role of His119 in Substrate Binding and Enzyme Activity

  • Oh, Eun-Joo;Lee, Yoon-Jin;Choi, Jeong-Jin;Seo, Moo-Seok;Lee, Mi-Sun;Kim, Gun-A;Kwon, Suk-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.287-294
    • /
    • 2008
  • Three amino acid residues (His119, Glu164, and Glu338) in the active site of Thermus caldophilus GK24 ${\beta}$-glycosidase (Tca ${\beta}$-glycosidase), a family 1 glycosyl hydrolase, were mutated by site-directed mutagenesis. To verify the key catalytic residues, Glu164 and Glu338 were changed to Gly and Gln, respectively. The E164G mutation resulted in drastic reductions of both ${\beta}$-galactosidase and ${\beta}$-glucosidase activities, and the E338Q mutation caused complete loss of activity, confirming that the two residues are essential for the reaction process of glycosidic linkage hydrolysis. To investigate the role of His119 in substrate binding and enzyme activity, the residue was substituted with Gly. The H119G mutant showed 53-fold reduced activity on 5mM p-nitrophenyl ${\beta}$-D-galactopyranoside, when compared with the wild type; however, both the wild-type and mutant enzymes showed similar activity on 5mM p-nitrophenyl ${\beta}$-D-glucopyranoside at $75^{\circ}C$. Kinetic analysis with p-nitrophenyl ${\beta}$-D-galactopyranoside revealed that the $k_{cat}$ value of the H119G mutant was 76.3-fold lower than that of the wild type, but the $K_m$ of the mutant was 15.3-fold higher than that of the wild type owing to the much lower affinity of the mutant. Thus, the catalytic efficiency $(k_{cat}/K_m)$ of the mutant decreased to 0.08% to that of the wild type. The $k_{cat}$ value of the H119G mutant for p-nitrophenyl ${\beta}$-D-glucopyranoside was 5.l-fold higher than that of the wild type, but the catalytic efficiency of the mutant was 2.5% of that of the wild type. The H119G mutation gave rise to changes in optima pH (from 5.5-6.5 to 5.5) and temperature (from $90^{\circ}C\;to\;80-85^{\circ}C$). This difference of temperature optima originated in the decrease of H119G's thermostability. These results indicate that His119 is a crucial residue in ${\beta}$-galactosidase and ${\beta}$-glucosidase activities and also influences the enzyme's substrate binding affinity and thermostability.

Changes in the Cell Wall Components and Glycosidases Activity during Development of Peach Fruits (복숭아 과실의 발육 중 세포벽성분 및 Glycosidase 활성의 변화)

  • 장경호;김대현;변재균
    • Food Science and Preservation
    • /
    • v.8 no.1
    • /
    • pp.66-73
    • /
    • 2001
  • This study was carried out to know whether $\beta$-galactosidase is directly important or not on fruit softening during the development of peach fruits compared to those in the stage stage. It was investigated that the flesh firmness, cell wall components, and the glycosidase activities of the peach fruits with a fast softening cultivar, 'Mibeakdo', a slow softening cultivar,'Yumyung'and a middle softening cultivar, 'Okubo$\beta$, at different developmental stages, on 13 May, 16 June, 16 July, and 5 August and on 28 August which harvested only 'Yumyung' fruits. In order to investigate the amounts of total sugar and non-cellulosic neutral sugar, the cell wall materials of each fruit were solubilized in distilled water, 0.05M CDTA, 0.05M Na$_2$CO$_3$, 4% KOH, and 24% KOH sequentially. During the fruit development, the fruit firmness of three cultivars decreased and the fruit firmness of 'Yumyung' was higher than that fo 'Mibeakdo' and 'Okubo' in the overall period. During the fruit development, the changes of total sugar amounts of each measured fractions were similar among peach cultivars. Arabinose and galactose were the predominant non-cellulosic neutral sugars in all the fractions including cell wall material of the three cultivars. There was an active relationship between the changes of flesh firmness in three cultivars and the mol % changes of rhamnose on 5 August which was the harvest date of 'Mibeakdo' and 'Okubo' fruits. The activity of soluble $\beta$-galactosidase was high at the early developmental stage and then dropped to a very low activity level in all cultivars. The activity of cell wall-bound $\beta$-galactosidase was high at the early developmental stage and then decreased continuously through the harvest date. In addition the changes of other glycosidase activities were similar among cultivars.

  • PDF

New Dioscin-Glycosidase Hydrolyzing Multi-Glycosides of Dioscin from Absidia Strain

  • Fu, Yao Yao;Yu, Hong Shan;Tang, Si Hui;Hu, Xiang Chun;Wang, Yuan Hao;Liu, Bing;Yu, Chen Xu;Jin, Feng Xie
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.6
    • /
    • pp.1011-1017
    • /
    • 2010
  • A novel dioscin-glycosidase that specifically hydrolyzes multi-glycosides, such as 3-O-${\alpha}$-L-($1{\to}4$)-rhamnoside, 3-O-${\alpha}$-L-($1{\to}2$)-rhamnoside, 3-O-${\alpha}$-L-($1{\to}4$)-arabinoside, and ${\beta}$-D-glucoside, on diosgenin was isolated from the Absidia sp.d38 strain, purified, and characterized. The molecular mass of the new dioscin-glycosidase is about 55 kDa based on SDS-PAGE. The dioscin-glycosidase gradually hydrolyzes either 3-O-${\alpha}$-L-($1{\to}4$)-Rha or 3-O-${\alpha}$-L-($1{\to}2$)-Rha from dioscin into 3-O-${\alpha}$-L-Rha-${\beta}$-D-Glc-diosgenin, further rapidly hydrolyzes the other ${\alpha}$-L-Rha from 3-O-${\alpha}$-L-Rha-${\beta}$-D-Glc-diosgenin into the main intermediate products of 3-O-${\beta}$-D-Glc-diosgenin, and subsequently hydrolyzes these intermediate products into aglycone as the final product. The enzyme also gradually hydrolyzes 3-O-${\alpha}$-L-($1{\to}4$)-arabinoside, 3-O-${\alpha}$-L-($1{\to}2$)-rhamnoside, and ${\beta}$-D-glucoside from [3-O-${\alpha}$-L-($1{\to}4$)-Ara, 3-O-${\alpha}$-L-($1{\to}4$)-Rha]-${\beta}$-D-Glc-diosgenin into diosgenin as the final product, exhibiting significant differences from previously reported glycosidases. The optimal temperature and pH for the new dioscin-glycosidase is $40^{\circ}C$ and 5.0, respectively. Whereas the activity of the new dioscin-glycosidase was not affected by $Na^+$, $K^+$, and $Mg^{2+}$ ions, it was significantly inhibited by $Cu^{2+}$ and $Hg^{2+}$ ions, and slightly affected by $Ca^{2+}$ ions.

Accumulating Pattern of ${\alpha}-glycosidase$ Inhibitor in Various Silkworm Varities (누에품종별 혈당강하물질 축적양상 구명)

  • Kang, Pil-Don;Kim, Jin-Won;Sohn, Bong-Hee;Kim, Kee-Young;Jung, I-Yoen;Kim, Mi-Ja;Ryu, Kang-Sun
    • Journal of Sericultural and Entomological Science
    • /
    • v.48 no.1
    • /
    • pp.25-27
    • /
    • 2006
  • [ ${\alpha}-Glycosidase$ ] inhibitors slows the velocity of the uptake of monosaccharides in the small intestine by retarding the speed of degradation of disaccharides to monosaccharides, which made it possible to develop ${\alpha}-glycosidase$ inhibitors as the antihyperglycemic ('antihyperglycemic' means 'blood-glucose-level-lowering') reagent for the diabetic patients such as acarbose and miglitol. Twenty kinds of ${\alpha}-glycosidase$ inhibitors have been reported to exist in mulberry, Morns alba, and some of them are also found in the silkworm, Bombyx mari, as the result of its daily feeding of mulberry leaves as the sole diet. 1-Deoxynojirimycin (DNJ), one of the most potent ${\alpha}-glycosidase$ inhibitor, is the most abundant among polyhydroxylated alkaloids with ${\alpha}-glycosidase$ inhibiting activity in both M alba and B. mari, therefore considered the antihyperglycemic criterion of the mulberry- or silkworm-based neutroceutical products. DNJ is thought to be accumulated in the body of silkworm because the its concentration in the silkworm body is two to three times as much as that in the mulberry leaves. Eighteen silkworm F1 varieties have been recommended for industrial rearing in Korea by some standards such as pathological strength. DNJ concentration in 18 recommendedwere measured at 3rd day in the 5th instar after lyophilization to determine the varieties that accumulates DNJ in its body most. GeumOk-Jam was the highest in the DNJ concentration of 5.45 mg/gDW among the recommended F1 varieties.

Enzymatic in vitro glycosylation using peptide-N-glycosidase F

  • Lee, Ji-Yeon;Park, Tae-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.721-724
    • /
    • 2000
  • The possibility of the enzymatic in vitro glycosylation using peptide-N-glycosidase F was examined. Oligosaccharide chains in the glycoproteins are important for the biological activity, solubility, immunogenecity, recognition, and prevention of degradation. After 4 h incubation of deglycosylated glycoprotein with excess glucose oligomer and ammonia in acetone at $50^{\circ}C$, upper shift of protein band was observed on SDS-PAGE. And the different deglycosylation characteristics of glucose oxidase and fetuin were investigated.

  • PDF

Antidiabetic Activity of Mori Folium Ethanol Soluble Fraction in db/db mice (db/db 마우스에서 상엽 에탄올가용분획의 항당뇨활성)

  • Ryu, Jeong-Wha;Seo, Seong-Hoon;Chung, Sung-Hyun
    • YAKHAK HOEJI
    • /
    • v.42 no.6
    • /
    • pp.613-620
    • /
    • 1998
  • Antidiabetic activity of Mori folium ethanol soluble fraction (MFESF) was examined in db/db mice, which is a spontaneously hyperglycemic, hyperinsulinemic and obese animal model . 500 and 1000mg/kg dose for MFFSF (designated by SY 500 and SY 1000, respectively) and 5mg/kg dose for acarbose were administered for 6 weeks. Body weight gain, fasting and non-fasting serum glucose, glycated hemoglobin and triglyceride were all reduced dose dependently when compared between db/db control group and MFESF treated group. At 11th and 13th week after birth, MFESF increased an insulin secretion which may result in lowering serum glucose level. Total activities of sucrase and maltase in SY 500 treated group were decreased when compared to db/db control. On the other hand, those in SY 1000 and acarbose treated groups were increased. This result may suggest that proteins for sucrase and maltase were compensatorily induced due to significant inhibition of glycosidase-catalyzed reaction at doses administered in this study.

  • PDF

Intestinal Bacterial Metabolism of Flavonoids and Its Relation to Some Biological Activities

  • Kim, Dong-Hyun;Jung, Eun-Ah;Sohng, In-Suk;Han, Jung-Ah;Kim, Tae-Hyung;Han, Myung-Joo
    • Archives of Pharmacal Research
    • /
    • v.21 no.1
    • /
    • pp.17-23
    • /
    • 1998
  • Flavonoid glycosides were metabolized to phenolic acids via aglycones by human intestinal microflora producing ${\alpha}$-rhamnosidase, exo-${\beta}$-glucosidase, endo- ${\beta}$-glucosidase and/or ${\beta}$-glucuronidase. Rutin, hesperidin, naringin and poncirin were transformed to their aglycones by the bacteria producing ${\alpha}$-rhamnosidase and ${\beta}$-glucosidase or endo- ${\beta}$-glucosidase, and baicatin, puerarin and daidzin were transformed to their aglycones by the bacteria producing ${\beta}$glucuronidase, C-glycosidase and ${\beta}$-glycosidase, respectively. Anti-platelet activity and cytotoxicity of the metabolites of flavonoid glycosides by human intestinal bacteria were more effective than those of the parental compounds. 3,4-Dihydroxyphenylacetic acid and 4-hydroxyl-phenylacetic acid were more effective than rutin and quercetin on anti-platelet aggregation activity. 2,4,6-Trihydroxybenzaidehyde, quercetin and ponciretin were more effective than rutin and ponciretin on the cytotoxicity for tumor cell lines. We insist that these flavonoid glycosides should be natural prodrugs.

  • PDF