• 제목/요약/키워드: Glycogen synthase

검색결과 117건 처리시간 0.023초

가시오갈피 물 추출물이 간세포에서 포도당 이용 대사에 미치는 영향 (Effects of Acanthopanax senticosus Water Extract on Glucose-Regulating Mechanisms in HepG2 Cells)

  • 김대중;강윤환;김경곤;김태우;박재봉;최면
    • 한국식품영양과학회지
    • /
    • 제46권5호
    • /
    • pp.552-561
    • /
    • 2017
  • 본 연구에서는 가시오갈피 물 추출물(ASW)를 이용하여 아직 시도된 바가 없는 HepG2 세포 내 포도당 유입과정 및 glucokinase(GK) 활성을 통한 포도당 이용대사 실험을 수행하였다. 포도당의 세포 내 유입은 GLUT2의 transcription factor들 중 하나인 $HNF-1{\alpha}$의 활성화로 GLUT2의 유전자 발현이 증가하여 이루어지는 것을 확인하였다. GK 활성 측정 결과 ASW가 GK를 활성화하여 포도당의 인산화에 영향을 주는 것을 확인하였고 AMP-activated protein kinase의 인산화 증가로 glycolysis에 관여하는 효소인 GK의 단백질 발현은 증가하고, gluconeogenesis에 관여하는 phosphoenolpyruvate carboxykinase의 단백질 발현은 감소하는 것을 확인하였다. 그리고 인산화된 포도당이 glycogen으로 전환 저장되는 메커니즘을 pPI3k-pAkt-pGSK-$3{\beta}$의 단계별 단백질 발현을 확인함으로써 검증하였으며, glycogen 함량 측정을 통해 확인하였다. 본 연구를 통해 ASW가 다양한 메커니즘에 작용하여 당뇨의 예방 및 개선에 활용할 수 있는 잠재적 소재임을 확인하였고, 이는 ASW가 천연 기능성 소재로서의 개발가치가 높음을 시사한다.

Short-Cut Pathway to Synthesize Cellulose of Encysting Acanthamoeba

  • Moon, Eun-Kyung;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • 제50권4호
    • /
    • pp.361-364
    • /
    • 2012
  • The mature cyst of Acanthamoeba is highly resistant to various antibiotics and therapeutic agents. Cyst wall of Acanthamoeba are composed of cellulose, acid-resistant proteins, lipids, and unidentified materials. Because cellulose is one of the primary components of the inner cyst wall, cellulose synthesis is essential to the process of cyst formation in Acanthamoeba. In this study, we hypothesized the key and short-step process in synthesis of cellulose from glycogen in encysting Acanthamoeba castellanii, and confirmed it by comparing the expression pattern of enzymes involving glycogenolysis and cellulose synthesis. The genes of 3 enzymes, glycogen phosphorylase, UDP-glucose pyrophosphorylase, and cellulose synthase, which are involved in the cellulose synthesis, were expressed high at the 1st and 2nd day of encystation. However, the phosphoglucomutase that facilitates the interconversion of glucose 1-phosphate and glucose 6-phosphate expressed low during encystation. This report identified the short-cut pathway of cellulose synthesis required for construction of the cyst wall during the encystation process in Acanthamoeba. This study provides important information to understand cyst wall formation in encysting Acanthamoeba.

백서에서 식이내 열량 영양소의 배분이 인슐린 분비능과 인슐린 저항성에 미치는 영향 (The Effects of Dietary Caloric Distribution on Insulin Secretion and Insulin Resistance in Sprague Dawley Rats)

  • 박선민;최미경;안승희;김영희;박춘희;최수봉
    • Journal of Nutrition and Health
    • /
    • 제34권5호
    • /
    • pp.485-492
    • /
    • 2001
  • The prevalence of type 2 diabetes mellitus has been rapidly increased in parallel with the westernization of eating behavior in Korea. Increased consumption of animal fat and simple sugar can be potential contributors for insulin resistance. The purpose of the study was to determine whether Western-(WD) and Korean-style(KD) diets altered insulin secretion and insulin resistance in male Sprague Dawley rats. Rats weighing 98$\pm$5g were provided by KD(77 En% of starch, 5 En% of corn oil and 13 En% of gluten plus 5 En% of casein), WD(42 En% of starch, 40 En% of butter and 18% of casein) or control diet(62 En% of starch, 20 En% of corn oil and 18% of casein) for 12 weeks. Body weights were lower in KD compared to WD. Fasting blood glucose levels were not different among diets. Insulin secretion from the beta cells was higher by 2.2$\pm$0.4 folds in WD than KD at baseline. In hyperglycemic clamp insulin secretion was higher in WD than KD and CD. Whole body glucose disposal rates referred to the state of insulin sensitivity were lowest in WD among groups. Glycogen deposits in soleus and quadriceps muscles were lowest in WD among all groups, but their triglyceride contents were highest. GLUT4 contents and glycogen synthase were lowest in WD in both muscles. In conclusions, westernization of diets needed more insulin to normalization of blood glucose levels due to increased insulin resistance. Thus, WD would lead to increased prevalence of diabetes mellitus when increased insulin resistance could not be compensated by insulin secretion in the case of elevated blood glucose levels. (Korean J Nutriton 34(5) : 485~492, 2001)

  • PDF

SUPPRESSION BY CHLOROPHYLL, BUT PROMOTION BY CHLOROPHYLLIN, OF COLON CARCINOGENESIS IN THE FISHER 344 RAT

  • Blum, Carmen A.;Xu, Meirong;Orner, Gayle A.;Diaz, G.Dario;Li, Qingjie;Bailey, George S.;Dashwood, Roderick H.
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Dietary and Medicinal Antimutgens and Anticarcinogens
    • /
    • pp.48-49
    • /
    • 2001
  • The carcinogens 2-amino-3-methylimidazo[4, 5-f]quinoline (IQ) and 1, 2-dimethylhydrazine (DMH) induce colon tumors in the Fisher 344 rat that contain mutations in Ctnnbl, the gene for b-catenin, but the pattern of mutation differs from that found in human colon cancers. In both species, mutations affect the glycogen synthase kinase 3$\beta$ (GSK-3$\beta$) consensus region of $\beta$-catenin, but whereas they directly substitute critical Ser/Thr phosphorylation sites in human colon cancers, the majority of mutations cluster around Ser$_{33}$ in the rat tumors.(omitted)d)

  • PDF

SUPPRESSION BY CHLOROPHYLL, BUT PROMOTION BY CHLOROPHYLLIN, OF COLON CARCINOGENESIS IN THE FISHER 344 RAT

  • Blum, Carmen A.;Xu, Meirong;Orner, Gayle A.;Diaz, G.Daria;Li, Qingjie;Bailey, George S.;Dashwood, Roderick H.
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Effects of Edible Phytochemicals and Their Synthetic Derivatives on Carcinogenesis and Mutagenesis
    • /
    • pp.5-6
    • /
    • 2001
  • The carcinogens 2-arnioo-3-methylimidazo[4,5-f]quinoline (IQ) and 1,2-dimethylhydrazine (DMH) induce colon tumors in the Fisher 344 rat that contain mutations in Ctnnb1, the gene for b-catenin, but the pattern of mutation differs from that found in human colon cancers. in both species, mutations affect the glycogen synthase kinase 3$\beta$ (GSK-3$\beta$) consensus region of $\beta$-catenin, but whereas they directly substitute critical Ser/Thr phosphorylation sites in human colon cancers, the majority of mutations cluster around Ser$^{33}$ in the rat tumors.(omitted)

  • PDF

Regulation of adductor muscle growth by the IGF-1/AKT pathway in the triploid Pacific oyster, Crassostrea gigas

  • Kim, Eun-Young;Choi, Youn Hee
    • Fisheries and Aquatic Sciences
    • /
    • 제22권9호
    • /
    • pp.19.1-19.10
    • /
    • 2019
  • We investigated the insulin-like growth factor 1 (IGF-1)/AKT signaling pathway involved in muscle formation, growth, and movement in the adductor muscle of triploid Pacific oyster, Crassostrea gigas. Large and small triploid oysters (LTs and STs) cultured under identical conditions were screened, and the signaling pathways of individuals with superior growth were compared and analyzed. mRNA and protein expression levels of actin, troponin, tropomyosin, and myosin, proteins important in muscle formation, were higher in LTs compared with STs. Expression levels of IGF-1, IGF binding protein (IGFBP), and IGFBP complex acid-labile subunit were also higher in LTs compared with STs. Phosphorylation of the IGF receptor as well as that of AKT was high in LTs. In addition, the expression of phosphomammalian target of rapamycin and phospho-glycogen synthase kinase $3{\beta}$ was increased and the expression of Forkhead box O3 was decreased in LTs. Therefore, we suggested that the IGF-1/AKT signaling pathway affects the formation, growth, and movement of the adductor muscle in triploid oysters.

The inhibitory effects of glabridin on human platelet aggregation and thrombus formation

  • Sang-Nam Park;Hyuk-Woo Kwon
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.455-461
    • /
    • 2023
  • Glycyrrhiza glabra is a well-known medicinal herb that grows in various parts of the world and glabridin is a major chemical compound that is found in the root extract of Glycyrrhiza glabra. Glabridin is a natural compound known to have antioxidant, anti-inflammatory, anti-atherogenic, anti-osteoporotic and skin-whitening. In this study, we investigated if glabridin inhibited platelet aggregation and thrombus formation. We observed that glabridin inhibited collagen-induced platelet aggregation and suppressed signal transduction molecules such as phosphatidylinositol-3 kinase (PI3K), Akt, glycogen synthase kinase-3α/β (GSK-3α/β), SYK, cytosolic phospholipase A2, and p38 expression. In addition, glabridin suppressed thromboxane A2 generation and thrombin-induced clot retraction. Taken together, glabridin showed strong antiplatelet effects and may be used to block thrombosis- and platelet-mediated cardiovascular diseases.

산화성 손상을 받은 N18D3세포에서 Epigallocatechin gallate가 Phosphoinositide 3-kinase/Akt 및 Glycogen synthase kinase-3경로에 미치는 효과 (Effect of Epigallocatechin Gallate on Phosphoinositide 3-kinase/Akt and Glycogen Synthase Kinase-3 Pathway in Oxidative-stressed N18D3 Cells Following $H_2O_2$ Exposure)

  • 고성호;권혁성;오화순;오재호;박윤주;김준규;김기석;김용순;양기화;김승업;김승현;정해관
    • 한국임상약학회지
    • /
    • 제13권1호
    • /
    • pp.29-39
    • /
    • 2003
  • Neurodegenerative disorders are associated with apoptosis as a causing factor or an inducer. On the other hand, it has been reported that epigallocatechin gallate (EUG), one of antioxidants and flavonoids, and z-VAD-fmk, a nonselective caspase inhibitor, suppress oxidative-radical-stress-induced apoptosis. However, it is not yet known what is the effects of EGCG and z-VAD-fmk on the apoptotic pathway is through phosphoinositide 3-kinase (PI3K), Akt and glycogen synthase kinase-3 (GSK-3) as well as mitochondria, caspase-3 and poly (ADP-ribose) polymerase (PARP). We investigated the effects of EGCG by using $H_2O_2$ treated N18D3 cells, mouse DRG hybrid neurons. Methods: Following 30 min $100\;{\mu}m\;H_2O_2$ exposure, the viability of N18D3 cells (not pretreated vs. EGCG or z-VAD-fmk pretreated) was evaluated by using MTT assay. The effect of EGCG on immunoreactivity (IR) of cytochrome c, caspase-3, PARP, PI3K/Akt and GSK-3 was examined by using Western blot, and was compared with that of z-Y4D-fmk. Results: EGCG or z-VAD-fmk pretreated N18D3 cells showed increased viability. Dose-dependent inhibition of caspase-3 activation accompanied by PARP cleavage were demonstrated by pretreatment of both agents. However, inhibition of cytochrome c release was only detected in EGCG pretreated N18D3 cells. On the pathway through PI3K/Akt and GSK-3, however, the result of Western blot in EGCG pretreated N18D3 cells showed decreased IR of Akt and GSK-3 and increased IR of p85a PI3K, phosphorylated Akt and GSK-3, and contrasted with that in z-VAD-fmk pretreated N18D3 cells showing no changes on each molecule. Conclusion: These data show that EGCG affects apoptotic pathway through upstream signal including PI3K/Akt and GSK-3 pathway as well as downstream signal including cytochrome c and caspase-3 pathway. Therefore, these results suggest that EGCG mediated activation of PI3K/Akt and inhibition GSK-B could be new potential therapeutic strategy for neurodegenerative diseases associated with oxidative injury.

  • PDF

Exercise training and selenium or a combined treatment ameliorates aberrant expression of glucose and lactate metabolic proteins in skeletal muscle in a rodent model of diabetes

  • Kim, Seung-Suk;Koo, Jung-Hoon;Kwon, In-Su;Oh, Yoo-Sung;Lee, Sun-Jang;Kim, Eung-Joon;Kim, Won-Kyu;Lee, Jin;Cho, Joon-Yong
    • Nutrition Research and Practice
    • /
    • 제5권3호
    • /
    • pp.205-213
    • /
    • 2011
  • Exercise training (ET) and selenium (SEL) were evaluated either individually or in combination (COMBI) for their effects on expression of glucose (AMPK, PGC- $1{\alpha}$, GLUT-4) and lactate metabolic proteins (LDH, MCT-1, MCT-4, COX-IV) in heart and skeletal muscles in a rodent model (Goto-Kakisaki, GK) of diabetes. Forty GK rats either remained sedentary (SED), performed ET, received SEL, ($5\;{\mu}mol{\cdot}kg$ body $wt^{-1}{\cdot}day^{-1}$) or underwent both ET and SEL treatment for 6 wk. ET alone, SEL alone, or COMBI resulted in a significant lowering of lactate, glucose, and insulin levels as well as a reduction in HOMA-IR and AUC for glucose relative to SED. Additionally, ET alone, SEL alone, or COMBI increased glycogen content and citrate synthase (CS) activities in liver and muscles. However, their effects on glycogen content and CS activity were tissue-specific. In particular, ET alone, SEL alone, or COMBI induced upregulation of glucose (AMPK, PGC-la, GLUT-4) and lactate (LDH, MCT-1, MCT-4, COX-IV) metabolic proteins relative to SED. However, their effects on glucose and lactate metabolic proteins also appeared to be tissue-specific. It seemed that glucose and lactate metabolic protein expression was not further enhanced with COMBI compared to that of ET alone or SEL alone. These data suggest that ET alone or SEL alone or COMBI represent a practical strategy for ameliorating aberrant expression of glucose and lactate metabolic proteins in diabetic GK rats.

Dexamethasone enhances glucose uptake by SGLT1 and GLUT1 and boosts ATP generation through the PPP-TCA cycle in bovine neutrophils

  • Wang, Xinbo;Tang, Mingyu;Zhang, Yuming;Li, Yansong;Mao, Jingdong;Deng, Qinghua;Li, Shusen;Jia, Zhenwei;Du, Liyin
    • Journal of Veterinary Science
    • /
    • 제23권5호
    • /
    • pp.76.1-76.14
    • /
    • 2022
  • Background: Clinical dexamethasone (DEX) treatment or stress in bovines results in extensive physiological changes with prominent hyperglycemia and neutrophils dysfunction. Objectives: To elucidate the effects of DEX treatment in vivo on cellular energy status and the underlying mechanism in circulating neutrophils. Methods: We selected eight-month-old male bovines and injected DEX for 3 consecutive days (1 time/d). The levels of glucose, total protein (TP), total cholesterol (TC), and the proinflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in blood were examined, and we then detected glycogen and adenosine triphosphate (ATP) content, phosphofructosekinase-1 (PFK1) and glucose-6-phosphate dehydrogenase (G6PDH) activity, glucose transporter (GLUT)1, GLUT4, sodium/glucose cotransporter (SGLT)1 and citrate synthase (CS) protein expression and autophagy levels in circulating neutrophils. Results: DEX injection markedly increased blood glucose, TP and TC levels, the Ca2+/P5+ ratio and the neutrophil/lymphocyte ratio and significantly decreased blood IL-1β, IL-6 and TNF-α levels. Particularly in neutrophils, DEX injection inhibited p65-NFκB activation and elevated glycogen and ATP contents and SGLT1, GLUT1 and GR expression while inhibiting PFK1 activity, enhancing G6PDH activity and CS expression and lowering cell autophagy levels. Conclusions: DEX induced neutrophils glucose uptake by enhancing SGLT1 and GLUT1 expression and the transformation of energy metabolism from glycolysis to pentose phosphate pathway (PPP)-tricarboxylic acid (TCA) cycle. This finding gives us a new perspective on deeper understanding of clinical anti-inflammatory effects of DEX on bovine.