• 제목/요약/키워드: Glycogen synthase

검색결과 117건 처리시간 0.028초

Enhancement of paclitaxel-induced breast cancer cell death via the glycogen synthase kinase-3β-mediated B-cell lymphoma 2 regulation

  • Noh, Kyung Tae;Cha, Gil Sun;Kang, Tae Heung;Cho, Joon;Jung, In Duk;Kim, Kwang-Youn;Ahn, Soon-Cheol;You, Ji Chang;Park, Yeong-Min
    • BMB Reports
    • /
    • 제49권1호
    • /
    • pp.51-56
    • /
    • 2016
  • Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine protein kinase that is known to mediate cancer cell death. Here, we show that B-cell lymphoma 2 (Bcl-2), an anti-apoptotic protein, is regulated by GSK-3β and that GSK-3β-mediated regulation of Bcl-2 is crucial for mitochondrial-dependent cell death in paclitaxel-stimulated cells. We demonstrate that MCF7 GSK-3β siRNA cells are more sensitive to cell death than MCF7 GFP control cells and that in the absence of GSK-3β, Bcl-2 levels are reduced, a result enhanced by paclitaxel. Paclitaxel-induced JNK (c-Jun N-terminal kinase) activation is critical for Bcl-2 modulation. In the absence of GSK-3β, Bcl-2 was unstable in an ubiquitination-dependent manner in both basal- and paclitaxel-treated cells. Furthermore, we demonstrate that GSK-3β-mediated regulation of Bcl-2 influences cytochrome C release and mitochondrial membrane potential. Taken together, our data suggest that GSK-3β-dependent regulation of Bcl-2 is crucial for mitochondria-dependent cell death in paclitaxel-mediated breast cancer therapy. [BMB Reports 2016; 49(1): 51-56]

Lithium ameliorates rat spinal cord injury by suppressing glycogen synthase kinase-3β and activating heme oxygenase-1

  • Kim, Yonghoon;Kim, Jeongtae;Ahn, Meejung;Shin, Taekyun
    • Anatomy and Cell Biology
    • /
    • 제50권3호
    • /
    • pp.207-213
    • /
    • 2017
  • Glycogen synthase kinase $(GSK)-3{\beta}$ and related enzymes are associated with various forms of neuroinflammation, including spinal cord injury (SCI). Our aim was to evaluate whether lithium, a non-selective inhibitor of $GSK-3{\beta}$, ameliorated SCI progression, and also to analyze whether lithium affected the expression levels of two representative $GSK-3{\beta}$-associated molecules, nuclear factor erythroid 2-related factor-2 (Nrf-2) and heme oxygenase-1 (HO-1) (a target gene of Nrf-2). Intraperitoneal lithium chloride (80 mg/kg/day for 3 days) significantly improved locomotor function at 8 days post-injury (DPI); this was maintained until 14 DPI (P<0.05). Western blotting showed significantly increased phosphorylation of $GSK-3{\beta}$ (Ser9), Nrf-2, and the Nrf-2 target HO-1 in the spinal cords of lithium-treated animals. Fewer neuropathological changes (e.g., hemorrhage, inflammatory cell infiltration, and tissue loss) were observed in the spinal cords of the lithium-treated group compared with the vehicle-treated group. Microglial activation (evaluated by measuring the immunoreactivity of ionized calcium-binding protein-1) was also significantly reduced in the lithium-treated group. These findings suggest that $GSK-3{\beta}$ becomes activated after SCI, and that a non-specific enzyme inhibitor, lithium, ameliorates rat SCI by increasing phosphorylation of $GSK-3{\beta}$ and the associated molecules Nrf-2 and HO-1.

Glycogen Synthase Kinase-3 Interaction Domain Enhances Phosphorylation of SARS-CoV-2 Nucleocapsid Protein

  • Jun Seop, Yun;Hyeeun, Song;Nam Hee, Kim;So Young, Cha;Kyu Ho, Hwang;Jae Eun, Lee;Cheol-Hee, Jeong;Sang Hyun, Song;Seonghun, Kim;Eunae Sandra, Cho;Hyun Sil, Kim;Jong In, Yook
    • Molecules and Cells
    • /
    • 제45권12호
    • /
    • pp.911-922
    • /
    • 2022
  • A structural protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), nucleocapsid (N) protein is phosphorylated by glycogen synthase kinase (GSK)-3 on the serine/arginine (SR) rich motif located in disordered regions. Although phosphorylation by GSK-3β constitutes a critical event for viral replication, the molecular mechanism underlying N phosphorylation is not well understood. In this study, we found the putative alpha-helix L/FxxxL/AxxRL motif known as the GSK-3 interacting domain (GID), found in many endogenous GSK-3β binding proteins, such as Axins, FRATs, WWOX, and GSKIP. Indeed, N interacts with GSK-3β similarly to Axin, and Leu to Glu substitution of the GID abolished the interaction, with loss of N phosphorylation. The N phosphorylation is also required for its structural loading in a virus-like particle (VLP). Compared to other coronaviruses, N of Sarbecovirus lineage including bat RaTG13 harbors a CDK1-primed phosphorylation site and Gly-rich linker for enhanced phosphorylation by GSK-3β. Furthermore, we found that the S202R mutant found in Delta and R203K/G204R mutant found in the Omicron variant allow increased abundance and hyper-phosphorylation of N. Our observations suggest that GID and mutations for increased phosphorylation in N may have contributed to the evolution of variants.

Glycogen synthase kinase 3β in Toll-like receptor signaling

  • Ko, Ryeojin;Lee, Soo Young
    • BMB Reports
    • /
    • 제49권6호
    • /
    • pp.305-310
    • /
    • 2016
  • Toll-like receptors (TLRs) play a critical role in the innate immune response against pathogens. Each TLR recognizes specific pathogen-associated molecular patterns, after which they activate the adaptor protein MyD88 or TRIF-assembled signaling complex to produce immune mediators, including inflammatory cytokines and type I IFNs. Although the activation of TLR is important for host defense, its uncontrolled activation can damage the host. During the past decade, numerous studies have demonstrated that GSK3β is a key regulator of inflammatory cytokine production in MyD88-mediated TLR signaling via TLR2 and TLR4. Recently, GSK3β has also been implicated in the TRIF-dependent signaling pathway via TLR3. In this review, we describe current advances on the regulatory role of GSK3β in immune responses associated with various TLRs. A better understanding of the role of GSK3β in TLR signaling might lead to more effective anti-inflammatory interventions.

Decrease of glycogen synthase kinase 3β phosphorylation in the rat nucleus accumbens shell is necessary for amphetamineinduced conditioned locomotor activity

  • Shin, Joong-Keun;Kim, Wha Young;Rim, Haeun;Kim, Jeong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권1호
    • /
    • pp.59-65
    • /
    • 2022
  • Phosphorylation levels of glycogen synthase kinase 3β (GSK3β) negatively correlated with psychomotor stimulant-induced locomotor activity. Locomotor sensitization induced by psychomotor stimulants was previously shown to selectively accompany the decrease of GSK3β phosphorylation in the nucleus accumbens (NAcc) core, suggesting that intact GSK3β activity in this region is necessary for psychomotor stimulants to produce locomotor sensitization. Similarly, GSK3β in the NAcc was also implicated in mediating the conditioned effects formed by the associations of psychomotor stimulants. However, it remains undetermined whether GSK3β plays a differential role in the two sub-regions (core and shell) of the NAcc in the expression of drug-conditioned behaviors. In the present study, we found that GSK3β phosphorylation was significantly lower in the NAcc shell obtained from rats expressing amphetamine (AMPH)-induced conditioned locomotor activity. Further, we demonstrated that these effects were normalized by treatment with lithium chloride, a GSK3β inhibitor. These results suggest that the behavior produced by AMPH itself and a conditioned behavior formed by associations with AMPH are differentially mediated by the two sub-regions of the NAcc.

Depletion of Janus kinase-2 promotes neuronal differentiation of mouse embryonic stem cells

  • Oh, Mihee;Kim, Sun Young;Byun, Jeong-Su;Lee, Seonha;Kim, Won-Kon;Oh, Kyoung-Jin;Lee, Eun-Woo;Bae, Kwang-Hee;Lee, Sang Chul;Han, Baek-Soo
    • BMB Reports
    • /
    • 제54권12호
    • /
    • pp.626-631
    • /
    • 2021
  • Janus kinase 2 (JAK2), a non-receptor tyrosine kinase, is a critical component of cytokine and growth factor signaling pathways regulating hematopoietic cell proliferation. JAK2 mutations are associated with multiple myeloproliferative neoplasms. Although physiological and pathological functions of JAK2 in hematopoietic tissues are well-known, such functions of JAK2 in the nervous system are not well studied yet. The present study demonstrated that JAK2 could negatively regulate neuronal differentiation of mouse embryonic stem cells (ESCs). Depletion of JAK2 stimulated neuronal differentiation of mouse ESCs and activated glycogen synthase kinase 3β, Fyn, and cyclin-dependent kinase 5. Knockdown of JAK2 resulted in accumulation of GTP-bound Rac1, a Rho GTPase implicated in the regulation of cytoskeletal dynamics. These findings suggest that JAK2 might negatively regulate neuronal differentiation by suppressing the GSK-3β/Fyn/CDK5 signaling pathway responsible for morphological maturation.

Effects of exogenous lactate administration on fat metabolism and glycogen synthesis factors in rats

  • Kyun, Sunghwan;Yoo, Choongsung;Hashimoto, Takeshi;Tomi, Hironori;Teramoto, Noboru;Kim, Jisu;Lim, Kiwon
    • 운동영양학회지
    • /
    • 제24권2호
    • /
    • pp.1-5
    • /
    • 2020
  • [Purpose] Lactate has several beneficial roles as an energy resource and in metabolism. However, studies on the effects of oral administration of lactate on fat metabolism and glycogen synthesis are limited. Therefore, the purpose of the present study was to investigate how oral administration of lactate affects fat metabolism and glycogen synthesis factors at specific times (0, 30, 60, 120 min) after intake. [Methods] Male Sprague Dawley (SD) rats (n = 24) were divided into four groups as follows: the control group (0 min) was sacrificed immediately after oral lactate administration; the test groups were administered lactate (2 g/kg) and sacrificed after 30, 60, and 120 min. Skeletal muscle and liver mRNA expression of GLUT4, FAT/CD36, PDH, CS, PC and GYS2 was assessed using reverse transcription-polymerase chain reaction. [Results] GLUT4 and FAT/CD36 expression was significantly increased in skeletal muscle 120 min after lactate administration. PDH expression in skeletal muscle was altered at 30 and 120 min after lactate consumption, but was not significantly different compared to the control. CS, PC and GYS2 expression in liver was increased 60 min after lactate administration. [Conclusion] Our results indicate that exogenous lactate administration increases GLUT4 and FAT/CD36 expression in the muscle as well as glycogen synthase factors (PC, GYS2) in the liver after 60 min. Therefore, lactate supplementation may increase fat utilization as well as induce positive effects on glycogen synthesis in athletes.

가시오갈피, 타우린 및 카르니틴 보충식이가 흰쥐의 지구력운동 수행능력에 미치는 영향 (Effect of Dietary Supplementation of Eleutherococcus Senticosus, Taurine and Carnitine on Endurance Exercise Performance in Rats)

  • 송영주;한대석;오세욱;백일영;박태선
    • Journal of Nutrition and Health
    • /
    • 제35권8호
    • /
    • pp.825-833
    • /
    • 2002
  • The effects of dietary supplementation of Eleutherococcus senticosus, taurine and carnitine on maximal endurance exercise performance along with other related parameters were evaluated in rats that underwent aerobic exercise training for 6 weeks. Thirty-two male rats (4 weeks old) were randomly divided into 4 groups, and fed experimental diets and/or aerobic exercise trained according to the protocol: SC (sedentary control group), EC (exercise-trained control group), EE (exercise-trained Eleutherococcus senticosus-supplemented group), and EETC (exercise-trained Eleutherococcus senticosus, taurine and carnitine-supplemented group). The food efficiency ratio of EC rats was significantly lower than the value for SC rats (p < 0.01). Exercise-trained control animals (92 $\pm$ 8.8 min) could run significantly longer until exhausted on the treadmill than sedentary control rats (11 $\pm$ 0.8 min) (p < 0.001). Animals fed an Eleutherococcus senticosus-supplemented diet, and an Eleuthherococcus sonticosus, taurine and carnitine- supplemented diet while undergoing aerobic exercise training for 6 weeks exhibited, respectively, 8 and 5 minutes longer running performance until exhausted than the rats fed the control diet. The gastrocnemius muscle glycogen concentration of the rats, measured at 48 hours post maximal exercise performance test, was 43% higher in EC rats than the value for SC rats (p < 0.05), but was not different among EC, EE, and EETC rats. The mitochondrial citrate synthase activity of the soleus muscle was significantly higher in EC rats compared to the value for SC rats (p < 0.01), and showed a tendency to increase, without statistical significance, in EE or EETC rats compared to the value for EC rats. These results indicate that aerobic exercise training for 6 weeks significantly improved maximal exercise performance, muscle glycogen content along with citrate synthase activity, which are important in the energy metabolism of muscle under aerobic exercise. Dietary supplementation of Eleutherococcus senticosus in rats while undergoing aerobic exercise training improved maximal endurance exercise performance without significantly affecting muscle glycogen content and enzyme activities involved in energy metabolism during exercise. Taurine and carnitine supplementation failed to show an additive effect on maximal endurance exercise performance when consumed along with Eleutherococcus senticosus.

Anti-diabetic effects of benfotiamine on an animal model of type 2 diabetes mellitus

  • Chung, Kang Min;Kang, Wonyoung;Kim, Dong Geon;Hong, Hyun Ju;Lee, Youngjae;Han, Chang-Hoon
    • 대한수의학회지
    • /
    • 제54권1호
    • /
    • pp.21-26
    • /
    • 2014
  • Although benfotiamine has various beneficial anti-diabetic effects, the detailed mechanisms underlying the impact of this compound on the insulin signaling pathway are still unclear. In the present study, we evaluated the effects of benfotiamine on the hepatic insulin signaling pathway in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which are a type 2 diabetes mellitus model. OLETF rats treated with benfotiamine showed decreased body weight gain and reduced adipose tissue weight. In addition, blood glucose levels were lower in OLETF rats treated with benfotiamine. Following treatment with benfotiamine, the levels of Akt phosphorylation (S473/T308) in the OLETF groups increased significantly compared to the OLETF control group so that they were almost identical to the levels observed in the control group. Moreover, benfotiamine restored the phosphorylation levels of both glycogen synthase kinase (GSK)-$3{\alpha}/{\beta}$ (S21, S9) and glycogen synthase (GS; S641) in OLETF rats to nearly the same levels observed in the control group. Overall, these results suggest that benfotiamine can potentially attenuate type 2 diabetes mellitus in OLETF rats by restoring insulin sensitivity through upregulation of Akt phosphorylation and activation of two downstream signaling molecules, GSK-$3{\alpha}/{\beta}$ and GS, thereby reducing blood glucose levels through glycogen synthesis.