• Title/Summary/Keyword: Glutathione-S-transferase (GST)

Search Result 513, Processing Time 0.025 seconds

Glutathione-S-transferase Activity and its Changes to Chemical Pollution in Edible Shells and Fishes (식용 어패류 조직중의 glutathione S-transferase 활성과 화학물질 오염에 의한 변화)

  • Song, Mi-Ran;Choe, Sun-Nam;Park, Kwan-Ha
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.206-212
    • /
    • 1998
  • This study was undertaken to explore the applicability of glutathione S-transferase (GST) activity as a predictable indicator to monitor chemical pollution in shells and fishes utilized for food. There were some variations in the basal level of GST activity depending on species tested. Ark shells, Anadara satowi, showed the highest normal enzyme activity, followed by catfish and marine mussels, Mytilus coruscus. White clams, Meretrix lusoria, Israeli carp and catfish had lower activity. When A. satowi was exposed to 3-methyl-cholanthrene (3-MC), a prototypic polycyclic aromatic hydrocarbon for 1 week, GST activity decreased by about 30%. This reduction in GST activity induced by 3-MC did not recover until two weeks after the cessation of exposure. GST activity increased in response to 3-MC in most of the other species studied. The GST elevation in M. coruscus attained its maxinum of about 200% at the termination of 3-MC exposure maintaining this level up to 2 weeks, and declined gradually thereafter. 3-MC also induced GST activity in lsraeli carp in a similar fashion to M. coruscus. Phenobarbital induced GST activity both in M. coruscus and lsraeil carp. Other chemicals. such as clofibrate, butylated hydroxyanisole. hexachlorobenzene, and oxolinic acid did not change the enzyme activity significantly in most speciel. Phenol depressed GST activity only in lsraeli carp. These results suggest that the basal level of GST activity is somewhat variable and that the direction of change in response to chemicals seems to be related to its normal activity. The change in enzyme activity can be a preditable indicator of some environmental chemicals such as PAHs and phenol.

  • PDF

cDNA Sequence and mRNA Expression of a Putative Glutathione S-Transferase from the Mole Cricket, Gryllotalpa orientalis

  • Kim, Iksoo;Lee, Kwang-Sik;Jin, Byung-Rae;Kim, Jin-Won;Ryu, Kang-Sun;Ahn, Mi-Young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.6 no.2
    • /
    • pp.157-162
    • /
    • 2003
  • The glutathione S-transferase (GSTs) are enzymes responsible for the protection of cells from chemical toxicants and oxidative stress. We describe here the cDNA sequence and mRNA expression of a putative GST from the mole cricket, Gryllotalpa orientalis. The G. orientalis GST cDNA sequences comprised of 621 bp encoding 207 amino acid residues. The multiple sequence alignment of G. orientalis GST gene with other known insect GSTs showed several conserved residues that may be essential for the enzymatic activity of the protein. Phylogenetic analysis of the deduced amino acid sequences of G. orientalis GST gene with other insect GST sequences revealed that the G. orientalis GST gene belongs to class I GST, forming a strong monophyletic group (100% bootstrap value) exclusively for class I GSTs from a diverse insect species. Northern blot analysis confirmed midgut-specific expression at transcriptional level, evidencing the midgut as a site for GST synthesis.

Induction of NAD(P)H:quinone reductase and glutathione S-transferase by Xanthii Fructus and Prunellae Spica Extracts (창이자 및 꿀풀하고초에 의한 NAD(P)H:quinone reductase와 glutathione S-transferase의 유도)

  • Shon, Yun-Hee;Lee, Ki-Taek;Park, Sin-Hwa;Cho, Kyoung-Hee;Lim, Jong-Kook;Nam, Kyung-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.32 no.4 s.127
    • /
    • pp.269-273
    • /
    • 2001
  • Ethanol extracts from Xanthii Fructus (XFE) and Prunellae Spica (PSE) were investigated for the effects on the induction of cancer chemoprevention-associated enzymes. The following effects were measured: (a) induction of quinone reductase (QR) (b) induction of glutathione S-transferase (GST) (c) reduced glutathione (GSH) level. XFE and PSE were potent inducers of quinone reductase activity in Hepa1c1c7 murine hepatoma cells. Glutathione levels were increased with XFE and PSE. In addition, glutathione S-transferase activity was increased with XFE. However, GST activity was not increased with PSE. These results suggest that XFE and PSE have chemopreventive potentials by inducing quinone reductase and increasing GSH levels.

  • PDF

An Efficient System for the Expression and Purification of Yeast Geranylgeranyl Protein Transferase Type I

  • Kim, Hyun-Kyung;Kim, Young-Ah;Yang, Chul-Hak
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.77-82
    • /
    • 1998
  • To purify the geranylgeranyl protein transferase type I (GGPT-I) efficiently, a gene expression system using the pGEX-4T-1 vector was constructed. The cal1 gene, encoding the ${\beta}$ subunit of GGPT-I, was subcloned into the pGEX-4T-1 vector and co-transformed into E. coli cells harboring the ram2 gene, the ${\alpha}$ subunit gene of GGPT-I. GGPT-I was highly expressed as a fusion protein with glutathione S-transferase (GST) in E. coli, purified to homogeneity by glutathione-agarose affinity chromatography, and the GST moiety was excised by thrombin treatment. The purified yeast GGPT-I showed a dose-dependent increase in the transferase activity, and its apparent $K_m$ value for an undecapeptide fused with GST (GST-PEP) was $0.66\;{\mu}M$ and the apparent value for geranylgeranyl pyrophosphate (GGPP) was $0.071\;{\mu}M$.

  • PDF

Molecular Cloning and mRNA Expression a Glutathione S-Transferase cDNA from the Spider, Araneus ventricosus

  • Shin, Geun Ho;Kim, Hyung Suk;Kwon, Dong Wook;Lee, Jin Young;Byeon, Gyeong Min;Sohn, Hung Dae;Jin, Byung Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.1
    • /
    • pp.65-71
    • /
    • 2004
  • A fat body-specific glutathione S-transferase cDMA was cloned from the spider, Araneus ventricosus. The cDNA encoding A. ventricosus glutathione S-transferase (AvGST) is 645 base pairs long with an open reading frame of 215 amino acid residues with a calculated molecular weight of approximately 24 kDa. Northern blot analysis showed the tissue-specifically expression of AvGST in the A. ventricosus fat body.

Suppressive Effects of Citron Tea on Induction of Placental Glutathione S-transferase(GST-P) Positive Foci (유자차가 랫드 간암화과정에서 태반형 Glutathione S-transferase(GST-P) 양성 병소에 미치는 영향)

  • 김형숙;김희선;신길상;최혜미
    • Toxicological Research
    • /
    • v.13 no.4
    • /
    • pp.409-415
    • /
    • 1997
  • The influences of dietary supplement of citron tea on the hepatocellular chemical carcinogenesis have been studied by examining placental glutathione S-transferase(GST-P) positive foci area in a liver tissue, contents of total cytochrome P450, thiobarbituric acid reactive substances(TBARS) and glucose 6-phosphatase(G6Pase) in hepatic microsome and glutathione S-transferase(GST) activity. Weaning Sprague-Dawley male rats were fed AIN76 diet with or without citron tea supplement. Rats of CTR and CTR+ groups were fed diet without citron tea supplement while CDI and CDI+ groups were fed diet with citron tea supplement for the entire experimental period(13 weeks). Rats of CDP and CDP+ groups were fed diet without citron tea supplement for the first 7 weeks and swiched to citron tea containing diet for the last 6 weeks of experimental period. CTR+, CDI+ and CDP+ groups were carcinogen treated group. Diethylnitrosamine(DEN) was used as a carcinogen initiator and injected to the rats of carcinogen treated groups as a single dose of 200 mg/kg body weight intraperitoneally after 4 weeks of feeding. 2-Acethylaminofiuorene(AAF) was used as a carcinogen promoter and supplied in the diets of carcinogen treated rats as 0.02% content for the last 6 weeks starting from 2 weeks after DEN injection. Rats were sacrificed after 13 weeks of feeding. Liver/body weight ratio and GST activities were increased by carcinogen treatment. However, they were not changed by citron tea supplement. Total cytochrome P450 contents were not changed by carcinogen treatment or citron tea supplement. TBARS contents of carcinogen treated rats showed tendency to decrease by citron tea supplement. G6Pase activity decreased by carcinogen treatment and citron tea supplement. The area of GST-P positive foci detected in carcinogen treated rats were decreased by citron tea supplement and not affected by the timing and the duration of citron tea supplement. These results suggest that citron tea has suppressive effects on hepatocellular chemical carcinogenesis probably through antioxidant compounds by decreasing TBARS contents.

  • PDF

Molecular Cloning of a Delta-class Glutathione S-transferase Gene from Bombus ignitus

  • Park, Jong-Hwa;Yoon, Hyung-Joo;Gui, Zhong Zheng;Jin, Byung-Rae;Sohn, Hung-Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.18 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • We describe here the cloning and characterization of a cDNA encoding the glutathione S-transferase (GST) from the bumblebee Bombus ignitus. The Delta-class B. ignitus GST (BiGSTD) gene spans 1668 bp and consists of four introns and five exons that encode 216 amino acid residues with a calculated molecular weight of approximately 24561 Da and a pI of 8.03. The N-terminal domain of BiGSTD has a conserved Ser residue, as well as conserved Lys, Pro, Glu, Ser and Tyr residues that are involved in the GSH-binding site of GST. The BiGSTD showed 60% protein sequence identity to the Bombyx mori GSTT1, 58% to Musca domestica GST, 57% to Drosophila melanogaster GST, and 55% to Anopheles gambiae GST1. BiGSTD was close to the insect-specific Delta class of GSTs in a phylogenetic tree. Northern blot analysis showed that BiGSTD is highly expressed in the fat body and midgut, and less so in the muscles of B. ignitus worker bees.

Inhibition of glutathion-S-transferase and amidase by impurities in technical grade benfuracarb (Benfuracarb 원제에 함유된 불순물들의 glutathione-S-transferase와 amidase 저해 특성)

  • Yum, Chang-Sub;Kim, Song-Mun;Yu, Ji-Sook;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.1
    • /
    • pp.31-35
    • /
    • 2002
  • Objectives of this study were to determine if impurities in technical grade benfuracarb inhibit glutathione-S-transferase and amidase and to identify structures of impurities in technical grade benfuracarb. Technical grade benfuracarb, active ingredient, and impurity inhibited glutathione-S-transferase, and their $I_{50}$ were $9.7{\times}10^{-4}M,\;>1.0{\times}10^{-3}M,\;1.8{\times}10^{-4}M$, respectively. Such inhibition, however, was not higher than that by ethacrynic acid, a selective inhibitor to GST. Technical grade benfuracarb, active ingredient, and impurity also inhibited amidase, and their $I_{50}$ were $6.0{\times}10^{-5}M,\;4.3{\times}10^{-4}M,\;7.6{\times}10^{-5}M$, respectively. Our results show that the inhibition of both detoxifying enzymes by impurities in benfuracarb was 10-fold lower than that by active ingredient, suggesting that both active ingredient and impurities are involved in the inhibition of both detoxifying enzymes. Of four impurities (IM $1{\sim}4$) that were separated from technical grade benfuracarb, IM 2 and IM 3 inhibited GST and amidase. Based on data from IR, $^1H$-NMR, $^{13}C$-NMR and MS, it was determined that IM 2 is ethyl-N-isopropylamino propionate and IM 3 is ethyl-N-isopropyl-N(chlorosulfenyl)aminopropionate.

Generation and characterization of a monoclonal antibody with high species-specificity to Schistosoma japonicum glutathione S-transferase

  • Kim, Jung-Hwan;Park, Jung-Hyun;Ju, Sung-Kyu;Lee, Myung-Kyu;Kim, Kil Lyong
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.187-195
    • /
    • 2001
  • The expression of recombinant proteins fused to 26 kDa glutathione S-transferase (GST) extracted from Schistosoma japonicum represents an attractive system for purifiying proteins of interest in a single step using GST-affinity chromatography. In addition, the GST-tag is used conveniently for detecting fused proteins since its high solubility as well as its relatively small size rarely interferes with the biological activity of the fused protein. In this regard, the GST system is frequently applied for tracing fusion proteins in both prokaryotic and eukaryotic cells to elucidate the physiological interactions and functional compartments of proteins. To provide a further tool in analyzing GST-fusion proteins, a new monoclonal antibody, with a high specificity to the S. japonicum GST was produced. Methods: BALB/c mice were immunized both with recombinant S. japonicum GST proteins, and by the fusion of splenocytes from these mice with myeloma cells. From this, a new anti -GST monoclonal antibody, termed SARAH, was generated. The specificity and reactivity of this antibody was confirmed by ELISA and by Western blot analysis. Results: SARAH showed a high reactivity to recombinant GST and GST fusion protein but not with native mammalian GST proteins as derived from other species including humans, cows, rabbits and rats. The applicability of SARAH was further demonstrated by confocal laser scanning microscopy, where GST proteins that were expressed transiently in mouse fibroblast cells, were specifically detected without interference of endogenous GST. Conclusion: SARAH is new monoclonal antibody with a high specificity to recombinant GST proteins but not to endogenous GST in mammalian cells.

  • PDF

Isolation and Characterization of a Theta Glutathione S-transferase Gene from Panax ginseng Meyer

  • Kim, Yu-Jin;Lee, Ok-Ran;Lee, Sung-Young;Kim, Kyung-Tack;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.449-460
    • /
    • 2012
  • Plants have versatile detoxification systems to encounter the phytotoxicity of the wide range of natural and synthetic compounds present in the environment. Glutathione S-transferase (GST) is an enzyme that detoxifies natural and exogenous toxic compounds by conjugation with glutathione (GSH). Recently, several roles of GST giving stress tolerance in plants have demonstrated, but little is known about the role of ginseng GSTs. Therefore, this work aimed to provide further information on the GST gene present in Panax ginseng genome as well as its expression and function. A GST cDNA (PgGST) was isolated from P. ginseng cDNA library, and it showed the amino acid sequence similarity with theta type of GSTs. PgGST in ginseng plant was induced by exposure to metals, plant hormone, heavy metals, and high light irradiance. To improve the resistance against environmental stresses, full-length cDNA of PgGST was introduced into Nicotiana tabacum. Overexpression of PgGST led to twofold increase in GST-specific activity compared to the non-transgenic plants, and the GST overexpressed plant showed resistance against herbicide phosphinothricin. The results suggested that the PgGST isolated from ginseng might have a role in the protection mechanism against toxic materials such as heavy metals and herbicides.