• Title/Summary/Keyword: Glutathione s-transferase

Search Result 851, Processing Time 0.024 seconds

Inhibitory Substances of a Tau-Type Pumpkin Glutathione S-Transferase: Their Existence and Chemical Properties

  • Hossain, Md. Daud;Suzuki, Toshisada;Fujita, Masayuki
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.117-122
    • /
    • 2007
  • Distributions of physiological inhibitors of a tau-type pumpkin glutathione S-transferase(CmGSTU3) have been investigated in different organs of pumpkin plants, including the onion bulb and water hyacinth root. Inhibitory effects were observed in alcoholic extracts of all plant parts, but the extracts prepared from the roots of either water hyacinth or pumpkin plant showed the highest effect on CmGSTU3 toward 1-chloro-2,4- dinitrobenzene(CDNB). Results of various chromatographies indicated that a number of inhibitory substances were present in the alcoholic extract of each plant organ. Some macromolecules in the plant extracts exhibited inhibitory effects; however, the extracts might contain a large number of unknown low-molecular-weight inhibitory substances. Some of the low-molecular-weight inhibitors in water hyacinth root extract showed characteristics fluoresce under UV light.

  • PDF

Ultrastructural localization of 28 kDa glutathione S-transferase in adult Clonorchis sinensis

  • Hong, Sung-Jong;Yu, Jae-Ran;Kang, Shin-Yong
    • Parasites, Hosts and Diseases
    • /
    • v.40 no.4
    • /
    • pp.173-176
    • /
    • 2002
  • Glutathione S-transferase (28GST) with molecular mass of 28 kDa is an anti-oxidant enzyme abundant in Clonorchis sinensis. In adult C. sinensis, 28GST was localized in tegumental syncytium, cytons, parenchyma, and sperm tails examined by immunoelectron microscopy. C. sinensis 28GST was earlier found to neutralize bio-reactive compounds and to be rich in eggs. Accordingly. it is suggested that 28GST plays important roles in phase II defense system and physiological roles in worm fecundity of C. sinensis.

Effects of Phloroglucinol Isolated from Ecklonia stolonifera on the Acetaminophen-Metabolizing Enzyme System in Rat (해조류 곰피로부터 분리한 Phloroglucinol이 흰쥐의 아세트아미노펜 대사효소활성에 미치는 영향)

  • 박종철;허종문;박주권;김현주;전순실;최재수;최종원
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.3
    • /
    • pp.448-452
    • /
    • 2000
  • 실험동물에서 곰피로부터 분리한 phlorglucinol은 acetaminophen의 투여로 현저히 증가된 간조직에 있어서 지질과선화의 함량을 억제하였다. Acetaminophen 투여에 따른 간 cytochrome P-450, aminopyrine N-deme-thylase 및 aniline hydroxylase 활성변동은 관찰할 수 없었다. 곰피 성분 투여군은 glutathione S-transferase의 활성에서는 대조군의 수준에는 미치지 않으나 효소의 활성이 acetaminophen 단독 투여군보다 현저히 증가되었다. 그리고 간조직중 glutathione의 함량은 phlorglucionl을 전처리군에서 acetaminophen 단독 투여군보다 증가되었다. Glutathione reductase 활성에서는 acetaminophen 투여군은 대조군보다 활성이 감소되었으며, 성분으로 전처리한 군은 acetaminophen 단독 투여군보다 증가 되었다. 따라서 곰피에서 분리한 페놀성화합물인 phloroglucinol은 acetaminophen 투여로 증가되던 지질과 산화함량을 감소시키며, acetaminophen 대사효소활성에서는 glutathione S-transferase의 활성이 증가되어 acetaminophen 의 대사를 촉진시키는 것으로 추정된다.

  • PDF

Isolation of Gglutatihone S-Ttransferase(ClGST) Gene from Codonopsis lanceolata (더덕에서 Glutathione S-transferase (ClGST) 유전자의 분리)

  • Kim Jin-Ju;Yang Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.18 no.2
    • /
    • pp.240-245
    • /
    • 2005
  • A cDNA clone homologous to glutathione S-transferase gene was isolated and characterized from Codonopsis lanceolata(ClGST). The ClGST is 761 nucleotides long and has an open reading frame of 522 bp with a deduced amino acid sequence of 173 residues. The ClGST shows meaning homology to A. thaliana(AAC63629) $71\%$, C. chinense(CAI51314) $73\%$, E. esula(AAE65767) $75\%$, H. muticus(CAA55039) $70\%$, N. plumbaginifolia(CAA96431) $77\%$, S. commersonii(AAB65163).

Active-Site Mutants of Human Glutathione S-Transferase P1-1: Effects of the Mutations on Substrate Specificity and Inhibition Characteristics

  • Park, Hee-Joong;Yoon, Suck-Young;Kong, Kwang-Hoon
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.399-404
    • /
    • 1998
  • In order to gain further insight on the relationship between structure and function of glutathione S-transferase (GST), the six active-site mutants, R13T, K44T, Q51A, Q64A, S65A, and D98A, of human GST P1-1 were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. The active-site mutants showed marked differences in substrate specificity. The substitution of Gln51 with threonine resulted in a drastic decrease in the specific activities to <10% of the wild-type value. The substitution of Arg13 with threonine resulted in more decreased specific activity toward cumene hydroperoxide and in the $I_{50}$ values of S-(2,4-dinitrophenyl) glutathione and benanstatin A. These results suggest that the substitution of Arg13 with threonine changes the conformation of the active site to increase the affinity for the product or electrophilic substrate. Lys44 seems to be in the vicinity of the H-site of hGST P1-1 or may contribute to some extents to the electrophile binding.

  • PDF

An Effect of Methanethiol Treatment on the Liver Function of Rats Previously Fed Low or High Protein Diet (단백식이 조건을 달리하여 성장한 흰쥐에 Methanethiol 투여가 간기능에 미치는 영향)

  • 윤종국;정소웅;차상은
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.1
    • /
    • pp.15-18
    • /
    • 1993
  • To evaluate an effect of dietary protein on the intoxication of methanethiol in rats, the methanethiol was intraperitoneally injected to the rats fed a low or high protein diet and then the liver weight per body weight and seurm levels of alanine aminotransferase (ALT) activities were determined to investigate the differences in liver damage between the animal groups fed low protein diet and that fed high protein diet. On the other hand, the hepatic glutathione content and its conjugating enzyme, glutathione S-transferase (GST) activity were determined to clarify the cause of difference in liver function between the two groups. The increasing rate of liver weigh/body wt., serum levels of ALT to its control group were higher in methanethiol-treated rats fed low protein diet than those fed high protein diet. The hepatic content of glutathione and GST activity were higher in rats fed high protein diet than those fed low protein diet and the decreasing rate of hepatic glu-tathione content to its control group was higher in rats fed low protein diet than those fed high protein diet. Furthermore, the hepatic GST activity in methanethiol-treated rats was higher in rats fed high protein diet than those fed low protein diet. In case of control group, the GST activity was also higher in rats fed high protein diet than those fed low protein diet.

  • PDF

Antioxidant Activities of Citrus unshiu Extracts obtained from Different Solvents (추출용매에 따른 진피 추출물의 항산화 활성)

  • Lee, Sung-Gu;Oh, Sung-Cheon;Jang, Jae-Seon
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.3
    • /
    • pp.458-464
    • /
    • 2015
  • In this study, the total polyphenol content, electron donating ability (EDA) and inhibitory activity of glutathione S-transferase (GST) of freeze-dried Citrus unshiu extracts were examined. The Citrus unshiu extracts was obtained from four solvents such as ethyl acetate, acetone, methyl chloride and methanol, to evaluate its functional properties. Total polyphenol contents were measured in the two different extracts, and the extracts were screened for their potential antioxidant activities using tests such as electron donating ability (EDA), glutathione S-transferase (GST). The total polyphenol contents of Citrus unshiu extracts were $928.48{\pm}1.19{\mu}g\;GAE/mL$ in ethyl acetate (EA), $886.03{\pm}0.44{\mu}g\;RE/mL$ in acetone (AC), $413.08{\pm}1.39{\mu}g\;GAE/mL$ in methylene chloride (MC), $12,648.60{\pm}0.56{\mu}g\;GAE/mL$ in methanol (MeOH), respectively. Also, the total polyphenol contents of EtOH Citrus unshiu extracts were $664.64{\pm}0.74{\mu}g\;GAE/mL$ in EA, $702.67{\pm}0.85{\mu}g\;RE/mL$ in AC, $429.64{\pm}0.61{\mu}g\;GAE/mL$ in MC, $16,108{\pm}0.73{\mu}g\;GAE/mL$ in MeOH, respectively. The total polyphenol contents were significantly difference (p<0.05) between the solvents. The electron donating ability of Citrus unshiu extracts were $62.80{\pm}0.36%$ in EA, $97.43{\pm}0.51%$ in AC, $52.20{\pm}0.30%$ in MC, $97.63{\pm}0.46%$ in MeOH, respectively. Also, the electron donating ability of EtOH Citrus unshiu extracts were $51.49{\pm}0.26%$ in EA, $63.17{\pm}0.31%$ in AC, $67.68{\pm}0.55%$ in MC, $96.18{\pm}0.41%$ in MA, respectively. The electron donating ability were significantly difference (p<0.05) between the solvents. The inhibitory activity of glutathione S-transferase in Citrus unshiu extracts were $76.22{\pm}0.65%$ in EA, $31.73{\pm}0.48%$ in MC, $97.48{\pm}0.56%$ in MeOH, respectively. Also, inhibitory activity of glutathione S-transferase in EtOH Citrus unshiu extracts were $75.54{\pm}0.55%$ in EA, $73.53{\pm}0.38%$ in MC, $48.70{\pm}0.46%$ in MeOH, respectively. The inhibitory activity of glutathione S-transferase were significantly difference (p<0.05) between the solvents. These results indicated that the Citrus unshiu extracts is a high-valued food ingredient and the extraction with methanol will be useful as a nutritional source with natural antioxidant activities. Considering high consumer demand beneficial health effects, Citrus unshiu extracts can be utilized to develop functional food health- promoting and natural antioxidant agents.

Naphthazarin Derivative (V) : Formation of Glutathione Conjugate and Cytotoxic Activity of 2-or 6-Substituted 5,8-Dimethoxy-1,4-napthoquinones in the Presence of Glutathione-S-transferase, in Rat Liver S-9 Fraction and Mouse Liver Perfusate

  • Zheng, Xiang-Guo;Kang, Jong-Seong;Kim, Hwan-Mook;Jin, Guang-Zhu;Ahn, Byung-Zun
    • Archives of Pharmacal Research
    • /
    • v.23 no.1
    • /
    • pp.22-25
    • /
    • 2000
  • Formation of glutathione (GSH) conjugates with 2- or 6-(1-hydroxymethyl)- and 2-(1-hydroxyethyl)-DMNQ derivatives (DMNQ, 5,8-dimethoxy-1,4-naphthoquone was carried out in phosphate buffer (pH 7.4), in the presence of glutathione-S-transferase (GST), in rat liver S-9 fraction and by perfusion, and the rates of conjugates formation were compared and correlated to cytotoxicity. The GSH conjugates of 6-(1-hydroxyalkyl)-DMNQ derivatives were formed faster than 2-(1-hydroxyalkyl)-DMNQ derivatives under all of the media, implying that steric hindrance was the cause of lowering the rate of conjugate formation of 2-substituted derivatives. For both isomers, addition of GST did not improve the reaction rate, compared with that in buffer, while the reaction in the S-9 fraction and the perfusate was accelerated to a great extent. The catalytic effect of the S-9 fraction and the perfusate contain an effective system relaxing the steric hindrance of 2-(1-hydroxyalkyl)-DMNQ derivatives. Furthermore, a good correlation between the formation of the GSH conjugates and the cytotoxic activity of both naphthazarin isomers suggests that the steric hindrance is a cause of lowering the cytotoxicity of 2-isomers.

  • PDF

Effects of the Methanol Extract of the Leaves of Brassica juncea and Its Major Component, Isorhamnetin $3-O-{\beta}-D-Glucoside$, on Hepatic Drug Metabolizing Enzymes in Bromobenzene-treated Rats

  • Hur, Jong-Moon;Choi, Jong-Won;Park, Jong-Cheol
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.439-443
    • /
    • 2007
  • The effects of the methanol extract of the leaves of Brassica juncea and isorhamnetin $3-O-{\beta}-D-glucopyranoside$, major compound isolated from the ethyl acetate fraction of this plant on hepatic lipid peroxidation and drug-metabolizing enzymes, were evaluated in rats treated with bromobenzene. The extract and isorhamnetin $3-O-{\beta}-D-glucopyranoside$ of oral administration did not show any significant effects on activities of aminopyrine N-demethylase and aniline hydroxylase, enzymes forming toxic epoxide by bromobenzene as well as on glutathione content. However, both methanol extract and isorhamnetin $3-O-{\beta}-D-glucopyranoside$ significantly recovered the decreased activities of glutathione s-transferase and epoxide hydrolase, and also reduced the lipid peroxide level in rats treated with bromobenzene. From the results, the protections of this plant against bromobenzene-induced hepatotoxicity are thought to be via enhancing the activities of epoxide hydrolase and glutathione s-transferase, enzymes removing toxic epoxide, and reducing the lipid peroxide level.

Induction of Glutathione S-transferase and NAD(P)H:Quinone Reductase by Astragali Radix Aqua-acupuncture Solution (황기(黃耆) 약침액(藥鍼液)의 Glutathione S-transferase 와 NAD(P)H: Quinone Reductase 유도)

  • Ryu Jun-Seon;Lim Jong-Kook
    • Korean Journal of Acupuncture
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • Induction of phase II enzymes such as quinone reductase (QR) or glutathione S-transferase (GST) is considered a major mechanism of protection against initiation of carcingenesis. This study was desinged to investigate the potential of Astragali Radix Aqua-acupuncture Solution (ARAS) to induce phase II enzymes and glutathione (GSH) in murine hepatoma cells grown in microtiter plate wells. ARAS was potent inducers of QR activity. ARAS was induced about 2.6-fold at concentration of $5{\times}$. In addition, GST activity was increased with ARAS. GSH levels were increased about 1.2-fold with ARAS at concentration of $0.1{\times}$. These results suggested that ARAS may act as blocking agents against carcinogenesis by induction of phase II marker enzymes.

  • PDF