• Title/Summary/Keyword: Glutamate receptors

Search Result 104, Processing Time 0.032 seconds

The Downregulation of Somatic A-Type $K^+$ Channels Requires the Activation of Synaptic NMDA Receptors in Young Hippocampal Neurons of Rats

  • Kang, Moon-Seok;Yang, Yoon-Sil;Kim, Seon-Hee;Park, Joo-Min;Eun, Su-Yong;Jung, Sung-Cherl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.135-141
    • /
    • 2014
  • The downregulation of A-type $K^+$ channels ($I_A$ channels) accompanying enhanced somatic excitability can mediate epileptogenic conditions in mammalian central nervous system. As $I_A$ channels are dominantly targeted by dendritic and postsynaptic processings during synaptic plasticity, it is presumable that they may act as cellular linkers between synaptic responses and somatic processings under various excitable conditions. In the present study, we electrophysiologically tested if the downregulation of somatic $I_A$ channels was sensitive to synaptic activities in young hippocampal neurons. In primarily cultured hippocampal neurons (DIV 6~9), the peak of $I_A$ recorded by a whole-cell patch was significantly reduced by high KCl or exogenous glutamate treatment to enhance synaptic activities. However, the pretreatment of MK801 to block synaptic NMDA receptors abolished the glutamate-induced reduction of the $I_A$ peak, indicating the necessity of synaptic activation for the reduction of somatic $I_A$. This was again confirmed by glycine treatment, showing a significant reduction of the somatic $I_A$ peak. Additionally, the gating property of $I_A$ channels was also sensitive to the activation of synaptic NMDA receptors, showing the hyperpolarizing shift in inactivation kinetics. These results suggest that synaptic LTP possibly potentiates somatic excitability via downregulating $I_A$ channels in expression and gating kinetics. The consequential changes of somatic excitability following the activity-dependent modulation of synaptic responses may be a series of processings for neuronal functions to determine outputs in memory mechanisms or pathogenic conditions.

Antinociceptive Effects of Intrathecal Metabotropic Glutamate Receptor Compounds and Morphine in Rats

  • Choi, Jeong II;Lee, Hyung Kon;Chung, Sung Tae;Kim, Chang Mo;Bae, Hong Beom;Kim, Seok Jai;Yoon, Myung Ha;Chung, Sung Su;Jeong, Chang Young
    • The Korean Journal of Pain
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • Background: Spinal metabotropic glutamate receptors (mGluRs) and opioid receptors are involved in the modulation of nociception. Although opioid receptors agonists are active for pain, the effects of the compounds for the mGluRs have not been definitely investigated at the spinal level. We examined the effects of the intrathecal mGluR compounds and morphine in the nociceptive test, and then we further clarified the role of the spinal mGluRs. In addition, the nature of the pharmacological interaction after the coadministration of mGluRs compounds with morphine was determined. Methods: Catheters were inserted into the intrathecal space of male SD rats. For the induction of pain, $50{\mu}l$ of 5% formalin solution or a thermal stimulus was applied to the hindpaw. An isobolographic analysis was used for the evaluation of the drug interaction. Results: Neither group I mGluR compounds nor group III mGluR compounds produced any antinociceptive effect in the formalin test. The group II mGluR agonist (APDC) had little effect on the formalin-induced nociception. The group II mGluR antagonist (LY 341495) caused a dose-dependent suppression of the phase 2 flinching response on the formalin test, but it did not reduce the phase 1 response of the formalin test nor did it increase the withdrawal latency of the thermal stimulus. Isobolographic analysis revealed a synergistic interaction after the intrathecal delivery of a LY 341495-morphine mixture. Conclusions: These results suggest that group II mGluRs are involved in the facilitated processing at the spinal level, and the combination of LY 341495 with morphine may be useful to manage the facilitated pain state.

Endogenous glutamate enhances survival rates of neurons via activating mitochondrial signalings in hippocampal neuron (미토콘드리아 기능을 통해 내인성 글루탐산이 신경세포 생존에 미치는 영향)

  • Noh, Jin-Woo;Kim, Hye-Ji;Eun, Su-Yong;Kang, Moon-Suk;Jung, Sung-Cherl;Yang, Yoon-Sil
    • Journal of Medicine and Life Science
    • /
    • v.15 no.2
    • /
    • pp.67-71
    • /
    • 2018
  • Neuronal excitotoxicity induces mitochondrial dysfunction and the release of proapoptotic proteins. Excitotoxicity, the process by which the overactivation of excitatory neurotransmitter receptors leads to neuronal cell death. Neuronal death by excitotoxicity was related to neuronal degenerative disorders and hypoxia, results from excessive exposure to excitatory neurotransmitters, such as glutamate. Glutamate acts at NMDA receptors in cultured neurons to increase the intracellular free calcium concentration. Therefore endogenous glutamate may be a key factor to regulate neuronal cell death via activating $Ca^{2+}$ signaling. For this issue, we tested some conditions to alter intracellular $Ca^{2+}$ level in dissociated hippocampal neurons of rats. Cultured hippocampal neuron were treated by KCl (20 mM), $CaCl_2$ (3.8 mM) and glutamate ($5{\mu}M$) for 24 hrs. Interestingly, The Optical Density of hippocampal neurons was increased by high KCl application in MTT assay data. This enhanced response by high KCl was dependent on synaptic $Ca^{2+}$ influx but not on intracellular $Ca^{2+}$ level. However, the number of neurons seemed to be not changed in Hoechst 33342 staining data. These results suggest that enhancement of synaptic activity plays a key role to increase mitochondrial signaling in hippocampal neurons.

Role of Peripheral Glutamate Receptors to Mechanical Hyperalgesia following Nerve Injury or Antidromic Stimulation of L5 Spinal Nerve in Rats with the Previous L5 Dorsal Rhizotomy (제5효후근을 절단한 백서에서 제5요척수신경의 신경손상이나 전기자극에 의한 기계적 과민통 생성에 있어서 말초 글루타민산 수용기의 역할)

  • Jang, Jun Ho;Nam, Taick Sang;Yoon, Duck Mi;Leem, Joong Woo;Paik, Gwang Se
    • The Korean Journal of Pain
    • /
    • v.19 no.1
    • /
    • pp.33-44
    • /
    • 2006
  • Background: Peripheral nerve injury leads to neuropathic pain, including mechanical hyperalgesia (MH). Nerve discharges produced by an injury to the primary afferents cause the release of glutamate from both central and peripheral terminals. While the role of centrally released glutamate in MH has been well studied, relatively little is known about its peripheral role. This study was carried out to determine if the peripherally conducting nerve impulses and peripheral glutamate receptors contribute to the generation of neuropathic pain. Methods: Rats that had previously received a left L5 dorsal rhizotomy were subjected to a spinal nerve lesion (SNL) or brief electrical stimulation (ES, 4 Hz pulses for 5 min) of the left L5 spinal nerve. The paw withdrawal threshold (PWT) to von Frey filaments was measured. The effects of an intraplantar (i.pl.) injection of a glutamate receptor (GluR) antagonist or agonist on the changes in the SNL- or ES-produced PWT was investigated. Results: SNL produced MH, as evidenced by decrease in the PWT, which lasted for more than 42 days. ES also produced MH lasting for 7 days. MK-801 (NMDAR antagonist), DL-AP3 (group-I mGluR antagonist), and APDC (group-II mGluR agonist) delayed the onset of MH when an i.pl. injection was given before SNL. The same application blocked the onset of ES-induced MH. NBQX (AMPA receptor antagonist) had no effect on either the SNL- or ES-induced onset of MH. When drugs were given after SNL or ES, MK-801 reversed the MH, whereas NBQX, DL-AP3, and APDC had no effect. Conclusions: Peripherally conducting impulses play an important role in the generation of neuropathic pain, which is mediated by the peripheral glutamate receptors.

Analysis of the Baroreceptor and Vestibular Receptor Inputs in the Rostral Ventrolateral Medulla following Hypotension in Conscious Rats

  • Lan, Yan;Lu, Huan-Jun;Jiang, Xian;Li, Li-Wei;Yang, Yan-Zhao;Jin, Guang-Shi;Park, Joo Young;Kim, Min Sun;Park, Byung Rim;Jin, Yuan-Zhe
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.159-165
    • /
    • 2015
  • Input signals originating from baroreceptors and vestibular receptors are integrated in the rostral ventrolateral medulla (RVLM) to maintain blood pressure during postural movement. The contribution of baroreceptors and vestibular receptors in the maintenance of blood pressure following hypotension were quantitatively analyzed by measuring phosphorylated extracellular regulated protein kinase (pERK) expression and glutamate release in the RVLM. The expression of pERK and glutamate release in the RVLM were measured in conscious rats that had undergone bilateral labyrinthectomy (BL) and/or sinoaortic denervation (SAD) following hypotension induced by a sodium nitroprusside (SNP) infusion. The expression of pERK was significantly increased in the RVLM in the control group following SNP infusion, and expression peaked 10 min after SNP infusion. The number of pERK positive neurons increased following SNP infusion in BL, SAD, and BL+SAD groups, although the increase was smaller than seen in the control group. The SAD group showed a relatively higher reduction in pERK expression when compared with the BL group. The level of glutamate release was significantly increased in the RVLM in control, BL, SAD groups following SNP infusion, and this peaked 10 min after SNP infusion. The SAD group showed a relatively higher reduction in glutamate release when compared with the BL group. These results suggest that the baroreceptors are more powerful in pERK expression and glutamate release in the RVLM following hypotension than the vestibular receptors, but the vestibular receptors still have an important role in the RVLM.

Regulator of G-Protein Signaling 4 (RGS4) Controls Morphine Reward by Glutamate Receptor Activation in the Nucleus Accumbens of Mouse Brain

  • Kim, Juhwan;Lee, Sueun;Kang, Sohi;Jeon, Tae-Il;Kang, Man-Jong;Lee, Tae-Hoon;Kim, Yong Sik;Kim, Key-Sun;Im, Heh-In;Moon, Changjong
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.454-464
    • /
    • 2018
  • Crosstalk between G-protein signaling and glutamatergic transmission within the brain reward circuits is critical for long-term emotional effects (depression and anxiety), cravings, and negative withdrawal symptoms associated with opioid addiction. A previous study showed that Regulator of G-protein signaling 4 (RGS4) may be implicated in opiate action in the nucleus accumbens (NAc). However, the mechanism of the NAc-specific RGS4 actions that induce the behavioral responses to opiates remains largely unknown. The present study used a short hairpin RNA (shRNA)-mediated knock-down of RGS4 in the NAc of the mouse brain to investigate the relationship between the activation of ionotropic glutamate receptors and RGS4 in the NAc during morphine reward. Additionally, the shRNA-mediated RGS4 knock-down was implemented in NAc/striatal primary-cultured neurons to investigate the role that striatal neurons have in the morphine-induced activation of ionotropic glutamate receptors. The results of this study show that the NAc-specific knock-down of RGS4 significantly increased the behaviors associated with morphine and did so by phosphorylation of the GluR1 (Ser831) and NR2A (Tyr1325) glutamate receptors in the NAc. Furthermore, the knock-down of RGS4 enhanced the phosphorylation of the GluR1 and NR2A glutamate receptors in the primary NAc/striatal neurons during spontaneous morphine withdrawal. These findings show a novel molecular mechanism of RGS4 in glutamatergic transmission that underlies the negative symptoms associated with morphine administration.

Presynaptic Mechanism Underlying Regulation of Transmitter Release by G Protein Coupled Receptors

  • Takahashi, Tomoyuki;Kajikawa, Yoshinao;Kimura, Masahiro;Saitoh, Naoto;Tsujimoto, Tetsuhiro
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.69-76
    • /
    • 2004
  • A variety of G protein coupled receptors (GPCRs) are expressed in the presynaptic terminals of central and peripheral synapses and play regulatory roles in transmitter release. The patch-clamp whole-cell recording technique, applied to the calyx of Held presynaptic terminal in brainstem slices of rodents, has made it possible to directly examine intracellular mechanisms underlying the GPCR-mediated presynaptic inhibition. At the calyx of Held, bath-application of agonists for GPCRs such as $GABA_B$ receptors, group III metabotropic glutamate receptors (mGluRs), adenosine $A_1$ receptors, or adrenaline ${\alpha}2$ receptors, attenuate evoked transmitter release via inhibiting voltage-activated $Ca^{2+}$ currents without affecting voltage-activated $K^+$ currents or inwardly rectifying $K^+$ currents. Furthermore, inhibition of voltage-activated $Ca^{2+}$ currents fully explains the magnitude of GPCR-mediated presynaptic inhibition, indicating no essential involvement of exocytotic mechanisms in the downstream of $Ca^{2+}$ influx. Direct loadings of G protein ${\beta}{\gamma}$ subunit $(G{\beta}{\gamma})$ into the calyceal terminal mimic and occlude the inhibitory effect of a GPCR agonist on presynaptic $Ca^{2+}$ currents $(Ip_{Ca})$, suggesting that $G{\beta}{\gamma}$ mediates presynaptic inhibition by GPCRs. Among presynaptic GPCRs glutamate and adenosine autoreceptors play regulatory roles in transmitter release during early postnatal period when the release probability (p) is high, but these functions are lost concomitantly with a decrease in p during postnatal development.

Chemical Coupling between Horizontal Cells in the Catfish Retina

  • Lee, Sung-Jong;Jung, Chang-Sub;Bai, Sun-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.21-30
    • /
    • 1998
  • The effects of GABA and glutamate on the horizontal cells were explored by an intracellular recording method to discern the mechanisms of receptive field formation by chemical coupling in the catfish outer retina. The results suggest that the horizontal cells of the catfish retina might use GABA as their transmitters and that the GABAergic system contributes to the formation of receptive fields of the horizontal cells. GABAC receptors may be involved in a chemical coupling between horizontal cells and concerned with the depolarizing actions by GABA on horizontal cells in the catfish retina. Since the chloride equilibrium potential is more positive than the dark membrane potential in horizontal cells, GABA released from a horizontal cell may depolarize the neighboring horizontal cells. Thus a chemical coupling between horizontal cells may be formed. $GABA_A$ receptors also may be involved in the negative feedback mechanism between photoreceptor and horizontal cell. And glutamate may be involved in connecting positive and negative feedback systems since it potentiated the GABA's actions. Therefore, it is presumed that large receptive fields in the catfish retina are formed not only by electrical coupling but also by chemical coupling between horizontal cells. And information travels laterally by pathways involving both electrical coupling composed of gap junctions and chemical coupling in the retinal network.

  • PDF

GABAA Receptor- and Non-NMDA Glutamate Receptor-Mediated Actions of Korean Red Ginseng Extract on the Gonadotropin Releasing Hormone Neurons

  • Cho, Dong-Hyu;Bhattarai, Janardhan Prasad;Han, Seong-Kyu
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • Korean red ginseng (KRG) has been used worldwide as a traditional medicine for the treatment of various reproductive diseases. Gonadotropin releasing hormone (GnRH) neurons are the fundamental regulators of pulsatile release of gonadotropin required for fertility. In this study, an extract of KRG (KRGE) was applied to GnRH neurons to identify the receptors activated by KRGE. The brain slice patch clamp technique in whole cell and perforated patch was used to clarify the effect of KRGE on the membrane currents and membrane potentials of GnRH neurons. Application of KRGE (3 ${\mu}g$/${\mu}L$) under whole cell patch induced remarkable inward currents (56.17${\pm}$7.45 pA, n=25) and depolarization (12.91${\pm}$3.80 mV, n=4) in GnRH neurons under high $Cl^-$ pipette solution condition. These inward currents were not only reproducible, but also concentration dependent. In addition, inward currents and depolarization induced by KRGE persisted in the presence of the voltage gated $Na^+$ channel blocker tetrodotoxin (TTX), suggesting that the responses by KRGE were postsynaptic events. Application of KRGE under the gramicidin perforated patch induced depolarization in the presence of TTX suggesting its physiological significance on GnRH response. Further, the KRGE-induced inward currents were partially blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; non-NMDA glutamate receptor antagonist, 10 ${\mu}M$) or picrotoxin (PIC; $GABA_A$ receptor antagonist, 50 ${\mu}M$), and almost blocked by PIC and CNQX mixture. Taken together, these results suggest that KRGE contains ingredients with possible GABA and non-NMDA glutamate receptor mimetic activity, and may play an important role in the endocrine function of reproductive physiology, via activation of $GABA_A$ and non-NMDA glutamate receptors in GnRH neurons.

Neurochemical Alterations in Physical Dependence on Butorphanol

  • Ho, I. K.;Fan, Lir-Wan;Kim, Seong-Youl;Ma, Tangeng;Rockhold, Robin W.
    • Biomolecules & Therapeutics
    • /
    • v.12 no.4
    • /
    • pp.198-201
    • /
    • 2004
  • This review focuses on finding neurochemical changes in physical dependence on butorphanol, a relatively potent mixed agonist-antagonist opioid analgesic agent that is five times more potent than morphine in antinociceptive effects. The chronic administration of butorphanol induces physical dependence. Withdrawal from such dependence can be reliably precipitated by administration of a narcotic antagonist, e.g., naloxone. Evidence for critical involvement of excitatory aminoacid (glutamate), opioid receptors, and phosphorylation of proteins in these phenomena is summarized.