• Title/Summary/Keyword: Glutamate antagonist

Search Result 61, Processing Time 0.026 seconds

Antidepressant-like Effects of the Gastrodia elata Bl Extract in Mice

  • Hong, Soon-Sang;Cho, Seung-Hun
    • Journal of Oriental Neuropsychiatry
    • /
    • v.24 no.3
    • /
    • pp.281-292
    • /
    • 2013
  • Objectives : A growing body of evidence has suggested that the dysfunction of glutamatergic systems plays a pivotal role in major depressive disorder (MDD). This study was performed to investigate the antidepressant-like effects of the ethanolic extract of Gastrodia elata Bl (GE) in mouse models and to investigate the role of ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors in producing these antidepressant-like effects. Methods : The forced swim test (FST) and tail suspension test (TST) were used to investigate GE's behavioral effects in mice. Additional biochemical and behavioral experiments with NBQX, an AMPA receptor antagonist, were undertaken to determine whether the antidepressant-like properties of GE are involved in AMPA receptor throughput. Results : Oral administration of GE extract (1,600 mg/kg) 1h prior to testing significantly reduced the immobility times in the FST and TST. These antidepressant-like effects of GE extract were increased dose-dependently. Pre-treatment with NBQX significantly attenuated the reduction in immobility time induced by the GE extract in the FST and TST. Conclusions : The ethanolic extract of GE may exert antidepressant-like effects with involvement of AMPA receptor.

Glucose/Oxygen Deprivation Induces Release of $[^3H]5-hydroxytryptamine$ Associated with Synapsin 1 Expression in Rat Hippocampal Slices

  • Park, Eun-Mi;Chu, Sang-Hui;Lee, Kyung-Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.5
    • /
    • pp.347-353
    • /
    • 2000
  • It has been well documented that a massive release of not only glutamate but also other neurotransmitters may modulate the final responses of nerve cells to the ischemic neuronal injury. But there is no information regarding whether the release of monoamines is directly associated with synaptic vesicular proteins under ischemia. In the present study, it was investigated whether synapsin 1, syntaxin and SNAP-25 are involved in the release of 5-hydroxytryptamine $([^3H]5-HT)$ in glucose/oxygen deprived (GOD) rat hippocampal slices. And, the effect of NMDA receptor using DL-2-amino-5-phosphonovaleric acid (APV) on ischemia- induced release of 5-HT and the changes of the above proteins were also investigated. GOD for 20 minutes enhanced release of $[^3H]5-HT,$ which was in part blocked by the NMDA receptor antagonist, APV. The augmented expression of synapsin 1 during GOD for 20 minutes, which was also in part prevented by APV. In contrast, the expression of syntaxin and SNAP-25 were not altered during GOD. These results suggest that ischemic insult induces release of $[^3H]5-HT$ associated with synapsin 1, synaptic vesicular protein, via activation of NMDA receptor in part.

  • PDF

Changes in Vestibular Nerve Activity Following Acute Hypotension in Rats

  • Park, Byung-Rim;Kim, Min-Sun;Yee, Gue-Hyun;Moon, Myoung-Jin;Kim, Jae-Hyo;Jin, Yuan-Zhe;Kim, Yo-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.85-89
    • /
    • 2003
  • The basic mechanism for the excitation of the peripheral vestibular receptors following acute hypotension induced by sodium nitroprusside (SNP) or hemorrhage was investigated in anesthetized rats. Electrical activity of the afferent vestibular nerve was measured after pretreatment with kynurenic acid, an NMDA receptor antagonist. The activity of the vestibular nerve at rest following acute hypotension induced by SNP or simulating hemorrhage was a greater increase than in control animals. The gain of the vestibular nerve with sinusoidal rotation following acute hypotension increased significantly compared to control animals. The acute hypotension induced by SNP or hemorrhage did not change the activity of the afferent vestibular nerve after kynurenic acid injection. These results suggest that acute hypotension produced excitation of the vestibular hair cells via glutamate excitotoxicity in response to ischemia.

Effect of N-Methyl-D-Aspartate Glutamate Receptor Antagonist, Memantine, on Alcohol Intake in C57BL/6 Mice (N-methyl-D-aspartate glutamate 수용체 길항제 memantine의 투여가 C57BL/6형 생쥐의 알코올 섭취량에 미치는 영향)

  • Kim, Hyeun-Kyeung;Kim, Sung-Gon;Kim, Ji-Hoon;Shin, Su-Mi;Lee, Sang-Shin;Bae, So-Hyun;Kim, Ho-Chan
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.532-537
    • /
    • 2009
  • Previous studies reported that the N-methyl-D-aspartate (NMDA) receptor is related to alcohol dependence in terms of developing withdrawal or tolerance, however, it is controversial whether NMDA receptor antagonists are effective in preventing relapse in alcohol-dependent patients or not. The purpose of this study was to investigate the effect of memantine, an NMDA receptor antagonist, on alcohol intake in C57BL/6 mice, which prefer drinking hereditarily. Using limited access procedures in C57BL/6 mice in the state of alcohol dependence, vehicle, naltrexone 1.0 mg/kg or, memantine 5, 25, or 50 mg/kg i.p. was administered respectively for twelve days. Medication effects on 2-hours alcohol, 22-hour water, and 24-hour food intake and body weight were studied. Using repeated measure ANOVA, the naltrexone 1 mg/kg, memantine 5, 25, or 50 mg/kg, and vehicle groups showed significant medication by day interaction (naltrexone, df=4, F=11.827, p<0.01, memantine 5 mg/kg, df=4, F=7.999, p<0.01; memantine 25 mg/kg, df=4, F=6.199, p<0.05; memantine 50 mg/kg, df=4, F=10.522, p<0.01) in 2-hour alcohol intake. In 3 memantine groups, there was no significant medication by day interaction with the vehicle group in 22-hour water intake, 24-hour food intake, or body weight. The naltrexone and vehicle groups showed significant medication by day interaction in body weight, but not in 22-hour water or 24-hour food intake. From these results, it is suggested that memantine treatment can affect alcohol intake in mice. Therefore, it is possible that a pure NMDA receptor antagonist is effective in preventing relapse in alcohol-dependent patients.

The Roles of Excitatory Amino Acid System in the Organophosphate-induced Brain Damage (유기인제에 의한 뇌 손상에 있어서 흥분성 아미노산의 역할)

  • Ko, Bong-Woo;Park, Eun-Hae;Kim, Dong-Sik;Bang, Sung-Hyun;Jin, Joo-Yeon;Kim, Dae-Sung;Ju, Chang-Wan;Lee, Kyung-Kap;Cho, Moon-Jae;Kimcho, So-Mi;Lee, Bong-Hee;Riu, Key-Zung;Park, Min-Kyoung;Lee, Young-Jae
    • Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.148-152
    • /
    • 2001
  • This study investigated the role of excitatory amino acid systems in the initiation of organophosphate-induced seizures and brain damages in rats through quantitative in vivo microdialysis. Microdialysates were collected from the hippocampus of rat brain, treated with diisopropylfluorophosphate (DFP; 2.67 mg/kg, s.c.) alone, and/or atropine sulfate (15 mg/kg, i.m.) and procyclidine (30 mg/kg, i.m.). The protective effects of atropine, a muscarinic blocker, and/or procyclidine, a N-methyl-D-aspartate and cholinergic antagonist, against DFP were examined. DFP treatment increased the levels of aspartate (Asp) and glutamate (Glu) significantly in the hippocampal persuate with the induction of seizures. Treatment of procyclidine could effectively block the increase of Asp and Glu levels. Atropine treatment showed no significant anticonvulsive effects against DFP-induced seizures. The increases of Asp and Glu levels by DFP were also completely blocked through the combined treatment of atropine and procyclidine. Histopathological findings on the hippocampus confirmed the above results. More effective protection was observed through the treatments of procyclidine alone or of both procyclidine and atropine than atropine alone against DFP-induced brain damage. Procyclidine was shown to be effective in DFP-induced seizures.

  • PDF

c-fos mRNA Expression in the Vestibular System following Hypergravity Stimulation in Rats

  • Jin Guang-Shi;Lee Jae-Hyo;Lee Jae-Hee;Lee Moon-Young;Kim Min-Sun;Jin Yuan Zhe;Song Jeong-Hoon;Park Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Altered environmental gravity, including both hypo- and hypergravity, may result in space adaptation syndrome. To explore the characteristics of this adaptive plasticity, the expression of immediate early gene c-fos mRNA in the vestibular related tissues following an exposure to hypergravity stimulus was determined in rats. The animals were subjected to a force of 2 g (twice earth's gravity) for 1, 3, or 12 h, and were examined poststimulus at 0, 2, 6, 12, and 24 h. RT-PCR (reverse transcription polymerase chain reaction) and real-time quantitative RT-PCR were adopted to analyze temporal changes in the expression of c-fos mRNA. The hypergravity stimulus increased the expression of c-fos mRNA in the vestibular ganglion, medial vestibular nucleus, inferior vestibular nucleus, hippocampus, cerebellum, and cortex. The peak expression occurred at 0 h poststimulation in animals stimulated with hypergravity for 1 h, and at 6 h poststimulus in those stimulated for 3 h. In contrast, those stimulated for 12 h exhibited dual peaks at 0 and 12 h poststimulus. Bilateral labyrinthectomy markedly attenuated the degree of c-fos mRNA expression. Glutamate receptor antagonist also dramatically attenuated the degree of c-fos mRNA expression. These results indicate that expression of c-fos mRNA in response to hypergravity occurs in the vestibular related tissues of the central nervous system, in which peripheral vestibular receptors and glutamate receptors play an important role. The temporal pattern of c-fos mRNA expression depended on the duration of the hypergravity stimulus.

Bisphenol A Disturbs Intracellular Calcium Homeostasis and its Relationship with Cytotoxicity (Bisphenol A에 의한 신경계 세포의 칼슘 항상성 교란 및 세포독성에 미치는 영향)

  • Lee Yoot Mo;Lee Sang Min;Son Dong Ju;Lee Sun Young;;Nam Sang Yun;Kim Dae Joong;Yun Young Won;Yoo Hwan Soo;Oh Ki Wan;Kim Tae Seong;Han Soon Young;Hong Jin Tae
    • Toxicological Research
    • /
    • v.20 no.3
    • /
    • pp.241-250
    • /
    • 2004
  • We previously found that bisphenol A (BPA) caused neurotoxic behavioral alteration. Since disturbance of calcium homeostasis is an implicated contributor in the neurotoxic mechanism of environmental toxicants, we investigated whether BPA alters calcium homeostasis. Unlike other neurotoxic agents which cause increase of intracellular calcium level, BPA decreased $[Ca^{2+}]_i$ dose-dependently in PC12 cells and cortical neuronal cells regardless of the calcium existence in buffer. BPA at greater concentrations than 100 $\mu\textrm{M}$ reduced cell viability significantly in both types of cells. BPA also suppressed L-glutamate (L-type channel activator, 30 mM) and trifluoperazine (calmodulin antagonist, 30 $\mu\textrm{M}$)-induced increase of $[Ca^{2+}]_i$. BPA further lowered caffeine (RYR activator, 100 $\mu\textrm{M}$)-decreased $[Ca^{2+}]_i$, but did not alter dantrolene (RYR inhibitor, 100 $\mu\textrm{M}$), heparin (IP3 inhibitor, 200 units/ml) and xestospongin C (IP3 inhibitor, 5 $\mu\textrm{M}$)-decreased $[Ca^{2+}]_i$. Cell viability was not directly related to intracellular calcium change by bisphenol A that alternation of intracellular calcium may not be a direct causal factor of BPA-induced neuronal cell death.

Effects of Somatostatin on the Responses of Rostrally Projecting Spinal Dorsal Horn Neurons to Noxious Stimuli in Cats

  • Jung, Sung-Jun;Jo, Su-Hyun;Lee, Sang-Hyuck;Oh, Eun-Hui;Kim, Min-Seok;Nam, Woo-Dong;Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.5
    • /
    • pp.253-258
    • /
    • 2008
  • Somatostatin (SOM) is a widely distributed peptide in the central nervous system and exerts a variety of hormonal and neural actions. Although SOM is assumed to play an important role in spinal nociceptive processing, its exact function remains unclear. In fact, earlier pharmacological studies have provided results that support either a facilitatory or inhibitory role for SOM in nociception. In the current study, the effects of SOM were investigated using anesthetized cats. Specifically, the responses of rostrally projecting spinal dorsal horn neurons (RPSDH neurons) to different kinds of noxious stimuli (i.e., heat, mechanical and cold stimuli) and to the $A{\delta}$ -and C-fiber activation of the sciatic nerve were studied. Iontophoretically applied SOM suppressed the responses of RPSDH neurons to noxious heat and mechanical stimuli as well as to C-fiber activation. Conversely, it enhanced these responses to noxious cold stimulus and $A{\delta}$-fiber activation. In addition, SOM suppressed glutamate-evoked activities of RPSDH neurons. The effects of SOM were blocked by the SOM receptor antagonist cyclo-SOM. These findings suggest that SOM has a dual effect on the activities of RPSDH neurons; that is, facilitation and inhibition, depending on the modality of pain signaled through them and its action site.

Studies About the Effect of Excitatory Amino Acid Receptor Antagonist on Traumatic Spinal Cord Injury (척수신경손상에 대한 흥분성 아미노산 수용체 길항제의 효과에 대한연구)

  • Kim Jong-Keun
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.1-9
    • /
    • 1995
  • The slow development of histopathological changes and long period required for stabilization of lesions have suggested that secondary injury processes exacerbate the effect of initial mechanical insult after traumatic spinal cord injury (SCI). The importance of glutamate receptors in the normal functions of spinal cord, in concert with the large body of evidence that points to their involvement in neurotoxicity due to both ischemic and traumatic insults to the CNS, suggested a probable role of glutamate receptors in secondary injury process after traumatic SCI. In order to investigate the involvement of excitatory amino acid in the secondary injury process after SCI, this study examined the effect of dextrorphan, a noncompetitive NMDA receptor antagonist, on the recovery of hindlimb function and the residual tissue at injury site following SCI. Locomotor function was assessed using open field test (21 point scale). At 8 weeks spinal cord tissue was examined using quantitative histopathologic technique. Prior to surgery female Long-Evans rats were adapted to the test environment. Rats received laminectomies (T9/T10), and spinal cord contusions (NYU impactor) were produced by a 10 gm weight dropped 25 mm. DXT (15 or 30 mg/kg, i.p.) or saline was injected 15 min before contusion. Behavioral testing resumed 2 days post-injury and continued twice a week for 8 weeks. No differences between DXT and saline groups were found for hindlimb function and sparing tissue at the lesion site. These results suggest that NMDA receptor might not be involved in secondary injury processes after traumatic SCI.

  • PDF

Activation of the M1 Muscarinic Acetylcholine Receptor Induces GluA2 Internalization in the Hippocampus (쥐 해마에서 M1 무스카린 아세틸콜린 수용체의 활성에 의한 GluA2 세포내이입 연구)

  • Ryu, Keun Oh;Seok, Heon
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1103-1109
    • /
    • 2015
  • Cholinergic innervation of the hippocampus is known to be correlated with learning and memory. The cholinergic agonist carbachol (CCh) modulate synaptic plasticity and produced long-term synaptic depression (LTD) in the hippocampus. However, the exact mechanisms by which the cholinergic system modifies synaptic functions in the hippocampus have yet to be determined. This study introduces an acetylcholine receptor-mediated LTD that requires internalization of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors on the postsynaptic surface and their intracellular mechanism in the hippocampus. In the present study, we showed that the application of the cholinergic agonist CCh reduced the surface expression of GluA2 on synapses and that this reduction was prevented by the M1 muscarinic acetylcholine receptor antagonist pirenzepine in primary hippocampal neurons. The interaction between GluA2 and the glutamate receptor-interacting protein 1 (GRIP1) was disrupted in a hippocampal slice from a rat upon CCh simulation. Under the same conditions, the binding of GluA2 to adaptin-α, a protein involved in clathrin-mediated endocytosis, was enhanced. The current data suggest that the activation of LTD, mediated by the acetylcholine receptor, requires the internalization of the GluA2 subunits of AMPA receptors and that this may be controlled by the disruption of GRIP1 in the PDZ ligand domain of GluA2. Therefore, we can hypothesize that one mechanism underlying the LTD mediated by the M1 mAChR is the internalization of the GluA2 AMPAR subunits from the plasma membrane in the hippocampal cholinergic system.