• 제목/요약/키워드: Glucose transporter 1

검색결과 150건 처리시간 0.026초

Photoaffinity Labelling of the Human Erythrocyte Glucose Transporters Expressed in Spodoptera frugiperda Clone 9 (Sf9) Cells

  • Lee, Chong-Kee
    • 대한의생명과학회지
    • /
    • 제8권4호
    • /
    • pp.211-215
    • /
    • 2002
  • The baculovirus/Sf9 cell expression can be employed as a powerful system for producing large amounts of the human erythrocyte glucose transporter, GLUT1 heterologously In order to exploit the system further, it is necessary to develop a convenient method for demonstrating that the transporter expressed in insect cells is biologically active. To achieve this, we have expressed the human CLUT1 in insect cells and photolabelled the expressed protein with [$^3$H] cytochalasin B, a potent inhibitor of the human erythrocyte glucose transporter. Subsequently, the labelled proteins were analysed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Membranes labelled with [$^3$H] cytochalasln B in the presence of L-Glucose yielded a single sharp peak of labelling of apparent $M_r$ 45,000 on SDS/polyacrylamide gels. The mobility of this peak corresponded exactly to that of the band detected by anti-glucose transporter antibodies on Western blots of membranes prepared from insect cells infected with recombinant virus. In addition, the sharpness of the radioactive peak provides further evidence for the conclusion that the expressed protein is much less heavily and heterogeneously glycosylated than its erythrocyte counterpart. No peak of labelling was seen with the membranes prepared from non-infected Sf9 cells. Furthermore, the incorporation of label into this peak was completely inhibited by the presence of 500 mM-D-Glucose during tile photolabelling procedure, showing the stereoselectivity of the labelling. These evidences clearly show that human glucose transporter expressed in insect cells exhibits native-like biological activity, and that photolabelling with [$^3$H] cytochalasin B can be a convenient means for analysing the biological activity of the transport protein expressed in insect cells.

  • PDF

생쥐 초기배아의 Glucose Transporter유전자 발현 양상에 관한 연구 (Differential Expression of Glucose Transporter Gene in Mouse Early Embryos)

  • 염혜원;변혜경;송견지;김해권;이호준
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제25권1호
    • /
    • pp.77-86
    • /
    • 1998
  • The uptake of glucose for metabolism and growth is essential to most animal cells and is mediated by glucose-transporter (GLUT) proteins. The aim of this study was to determine which class of glucose transporter molecules was responsible for uptake of glucose in the mouse early embryo and at which stage the corresponding genes were expressed. In addition, co-culture system with vero cell was used to investigate the effect of the system on GLUT expression. Two-cell stage embryos were collected from the superovulated ICR female and divided into 3 groups. As a control, embryos were cultured in 0.4% BSA-T6 medium which includes glucose. For the experimental groups, embryos were cultured in either co-culture system with vero cells or glucose-free T6 medium supplemented with 0.4% BSA and pyruvate as an energy substrate. 2-cell to blastocyst stage embryos in those groups were respectively collected into microtubes (50 embryos/tube). Total RNA was extracted and RT-PCR was performed. The products were analysed after staining ethidium bromide by 2% agarose gel electrophoresis. Blastocysts were collected from each group at l20hr after hCG injection. They were fixed in 2.5% glutaraldehyde, stained with hoechst, and mounted for observation. In control, GLUT1 was expressed from 4-cell to blastocyst. GLUT2 and GLUT3 were expressed in morula and blastocyst. GLUT4 was expressed in all stages. When embryos were cultured in glucose-free medium, no significant difference was shown in the expression of GLUT1, 2 and 3, compared to control. However GLUT4 was not expressed until morular stage. When embryos were co-cultured with vero cell, there was no significant difference in the expression of GLUT1, 2, 3 and 4 compared to control. To determine cell growth of embryos, the average cell number of blastocyst was counted. The cell number of co-culture ($93.8{\pm}3.1$, n=35) is significantly higher than that of control and glucose-free group ($76.6{\pm}3.8$, n=35 and $68.2{\pm}4.3$, n=30). This study shows that the GLUT genes are expressed differently according to embryo stage. GLUTs were detectable throughout mouse preimplantation development in control and co-culture groups. However, GLUT4 was not detected from 2- to 8-cell stage but detected from morula stage in glucose-free medium, suggested that GLUT genes are expressed autocrinally in the embryo regardless of the presence of glucose as an energy substrate. In addition, co-culture system can increase the cell count of blastocyst but not improve the expression of GLUT. In conclusion, expression of GLUT is dependent on embryo stage in preimplantation embryo development.

  • PDF

Tryptic Digestion and Cytochalasin B Binding Assay of the Human HepG2-Type Glucose Transporter Expressed in Spodoptera frugiperda Clone 21-AE Cells

  • 이종기
    • 대한의생명과학회지
    • /
    • 제11권1호
    • /
    • pp.57-61
    • /
    • 2005
  • The number of sites at which a protein can be readily cleaved by a proteolytic enzyme is greatly influenced by its three-dimensional structure. For native, properly-folded proteins both the rate of cleavage and number of sites at which cleavage takes place are usually much less than for the denatured protein. In order to compare the tertiary structure of recombinant HepG2 type glucose transporter with that of its native counterpart in the erythrocyte, the pattern of tryptic cleavage of the protein expressed in insect cell membranes was therefore examined. After 30 minutes digestion, a fragment of approximate Mr 19,000-21,000 was generated. In addition to this, there were two less intensely stained fragments of apparent Mr 28,000 and 17,000. The pattern of labelling was similar up to 2 hours of digestion. However, the fragments of Mr 19,000-21,000 and Mr 17,000 were no longer detectable after 4 hours digestion. The observation of a very similar pattern of fragments yielded by tryptic digestion of the HepG2 type transporter expressed in insect cells suggests that the recombinant protein exhibits a tertiary structure similar if not identical to that of its human counterpart. Also, the endogenous sugar transporter(s) present in Sf21 cells did not bind cytochalasin B, the potent transporter inhibitor. Therefore, the baculovirus/Spodoptera frugiperda (Sf) cell expression system could be very useful for production of large amounts of human glucose transporters, heterologously.

  • PDF

Glut1 promotes cell proliferation, migration and invasion by regulating epidermal growth factor receptor and integrin signaling in triple-negative breast cancer cells

  • Oh, Sunhwa;Kim, Hyungjoo;Nam, KeeSoo;Shin, Incheol
    • BMB Reports
    • /
    • 제50권3호
    • /
    • pp.132-137
    • /
    • 2017
  • Elevated glucose levels in cancer cells can be attributed to increased levels of glucose transporter (GLUT) proteins. Glut1 expression is increased in human malignant cells. To investigate alternative roles of Glut1 in breast cancer, we silenced Glut1 in triple-negative breast-cancer cell lines using a short hairpin RNA (shRNA) system. Glut1 silencing was verified by Western blotting and qRT-PCR. Knockdown of Glut1 resulted in decreased cell proliferation, glucose uptake, migration, and invasion through modulation of the EGFR/MAPK signaling pathway and integrin ${\beta}1$/Src/FAK signaling pathways. These results suggest that Glut1 not only plays a role as a glucose transporter, but also acts as a regulator of signaling cascades in the tumorigenesis of breast cancer.

Effect of Ganglioside $G_{M3}$ on the Erythrocyte Glucose Transporter (GLUT1): Conformational Changes Measured by Steady-State and Time-Resolved Fluorescence Spectroscopy

  • Yoon, Hae-Jung;Lee, Min-Yung;Jhon, GiI-Ja
    • BMB Reports
    • /
    • 제30권4호
    • /
    • pp.240-245
    • /
    • 1997
  • Interactions between ganglioside $G_{M3}$ and glucose transporter, GLUT1 were studied by measuring the effect of $G_{M3}$ on steady-state and time-resolved fluorescence of purified GLUT1 in synthetic lipids and on the 3-O-methylglucose uptake by human erythrocytes. The intrinsic tryptophan fluorescence showed a GLUT 1 emission maximum of 335 nm, and increased in the presence of $G_{M3}$ by 12% without shifting the emission maximum, The fluorescence lifetimes of intrinsic tryptophan on GLUT1 consisted of a long component of 7.8 ns and a short component of 2,3 ns and $G_{M3}$ increased both lifetime components. Lifetime components were quenched by acrylamide and KI. Acrylarnide-mduced quenching of long-lifetime components was partly recovered by $G_{M3}$ However. KI-induccd quenching of short- and long-lifetime components was not rescued by $G_{M3}$. The anisotropy of 1.6-diphenyl-1.3.5-hexatriene (DPH)-probed dimyristoylphosphatidylcholine (DMPC) model membrane was also increased with $G_{M3}$ incorporation, The transport rate of 3-O-methylglucose increased by 20% with $G_{M3}$ incorporation on the erythrocytes, Therefore, $G_{M3}$ altered the environment of lipid membrane and induced the conformational change of GLUT1.

  • PDF

A Probing of Inhibition Effect on Specific Interaction Between Glucose Ligand Carrying Polymer and HepG2 Cells

  • Park, Keun-Hong;Park, Sang-Hyug;Lee, Hyun-Jung;Min, Byoung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.450-455
    • /
    • 2004
  • A reducing glucose-carrying polymer, called poly [3-O-(4'-vinylbenzyl)-D-glucose](PVG), was interacted with HepG2 cells including a type-l glucose transporter (GLUT-1) on the cell membrane. The cooperative interaction between a number of GLUT-1s and a number of reducing 3-O-methyl-D-glucose moieties on the PVG polymer chain was found to be responsible for the increase in the interaction with HepG2 cells. The affinity between the cells and the PVG was studied using RITC-labeled glycopolymers. The specific interaction between the GLUT-1 on HepG2 cells and the PVG polymer carrying reducing glucose moieties was suppressed by the inhibitors, phloretin, phloridzin, and cytochalasin B. Direct observation by confocal laser microscopy with the use of RITC-labeled PVG and pretreatment of HepG2 cells with the inhibitors demonstrated that the cells interacted with the soluble form of the PVG polymer via GLUT-1, while fluorescence labeling of the cell surface was prevented after pretreatment with the inhibitors of GLUT-1.

The Effect of Glucose and Glucose Transporter on Regulation of Lactation in Dairy Cow

  • Heo, Young-Tae;Park, Joung-Jun;Song, Hyuk
    • Reproductive and Developmental Biology
    • /
    • 제39권4호
    • /
    • pp.97-104
    • /
    • 2015
  • Glucose is universal and essential fuel of energy metabolism and in the synthesis pathways of all mammalian cells. Glucose is the one of the major precursors of lactose synthesis using glycolysis result in producing milk fat and protein. During the milk fat synthesis, lipoprotein lipase (LPL) and CD36 are required for glucose uptake. Various morecules such as acyl-CoA synthetase 1 (ACSL1) activity of acetyl-CoA synthetase 2 (ACSS2), ACACA, FASN AGPAT6, GPAM, LPIN1 are closely related with milk fat synthesis. Additionally, glucose plays a major role for synthesizing lactose. Activations of lactose synthesize enzymes such as membranebound enzyme, beta-1,4-galactosyl transferase (B4GALT), glucose-6-phosphate dehydrogenase (G6PD) are changed by concentration of glucose in blood resulting change of amount of lactose production. Glucose transporters are a wide group of membrane proteins that facilitate the transport of glucose over a plasma membrane. There are 2 types of glucose transporters which consisted facilitative glucose transporters (GLUT); and sodium-dependent transport, mediated by the Na+/glucose cotransporters (SGLT). Among them, GLUT1, GLUT8, GLUT12, SGLT1, SGLT2 are main glucose transporters which involved in mammary gland development and milk synthesis. However, more studies are required for revealing clear mechanism and function of other unknown genes and transporters. Therefore, understanding of the mechanisms of glucose usage and its regulation in mammary gland is very essential for enhancing the glucose utilization in the mammary gland and improving dairy productivity and efficiency.

Role of plastidic glucose transporter in source metabolism of Arabidopsis

  • Lee, Youn-Hyung;Hong, Soon-Won;Lee, Jang-Wook;Bhoo, Seong-Hee;Jeon, Jong-Seong;Hahn, Tae-Ryong
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2005년도 추계학술대회 및 한일 식물생명공학 심포지엄
    • /
    • pp.9-21
    • /
    • 2005
  • To study the biochemical and physiological role of the plastidic glucose transporter (pGlcT) in carbohydrate metabolism, we characterized transgenic plants with mutations in the pGlcT gene (GT), gt-1 and gt-2, as well double mutants of GT and the maltose transporter (MEX1) and GT and the triose phosphate/phosphate translocator (TPT), GT and the cytosolic fructose-1,6-bisphosphatase gene (cFBP), and MEX1 and TPT, gt-1/mex2, gt-1/tpt-2, gt-1/cfbp-1, mex1-1/tpt-2, respectively. Compared to the wild type, all mutants except the gt-1/cfbp-1 mutant lines displayed higher starch accumulation and higher levels of maltose. Starch accumulation is due to a decrease in starch turnover, leading to an imbalance between the rates of synthesis and degradation. Sucrose levels of gt alleles were higher than those in wild-type plants during the light period, suggesting possible nightly supplementation via the maltose transport pathway to maintain proper carbohydrate partitioning in the plant leaves. The gt plants displayed less growth retardation than mex1-1 mutant and gt-1/mex2 double mutant displayed accumulativesevere growth retardation as compared to individual gt-1 and mex1-1 mutants, implying that the maltose transporter-mediated pathway is a major route for carbohydrate partitioning at night. The gt-1/tpt-2, mex1-1/tpt-2 and gt-1/cfbp-1 double mutants had retarded growth and low chlorophyll content to differing degrees, indicating that photosynthetic capacity had diminished. Interestingly, the gt-1/tpt-2 line displayed a glucose-insensitive phenotype and higher germination rates than wild type, suggesting its involvement not only in carbon partitioning, but also in the sugar signaling network of the pGlcT and TPT.

  • PDF

Proteomic Analysis of Fructophilic Properties of Osmotolerant Candida magnoliae

  • Yu, Ji-Hee;Lee, Dae-Hee;Park, Yong-Cheol;Lee, Mi-Gi;Kim, Dae-Ok;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.248-254
    • /
    • 2008
  • Candida magnoliae, an osmotolerant and erythritol producing yeast, prefers D-fructose to D-glucose as carbon sources. For the investigation of the fructophilic characteristics with respect to sugar transportation, a sequential extraction method using various detergents and ultracentrifugation was developed to isolate cellular membrane proteins in C. magnoliae. Immunoblot analysis with the Pma1 antibody and two-dimensional electrophoresis analysis coupled with MS showed that the fraction II was enriched with membrane proteins. Eighteen proteins out of 36 spots were identified as membrane or membrane-associated proteins involved in sugar uptake, stress response, carbon metabolism, and so on. Among them, three proteins were significantly upregulated under the fructose supplying conditions. The hexose transporter was highly homologous to Ght6p in Schizosaccharomyces pombe, which was known as a predominant transporter for the fructose uptake of S. pombe because it exhibited higher affinity to D-fructose than D-glucose. The physicochemical properties of the ATP-binding cassette transporter and inorganic transporter explained their direct or indirect associations with the fructophilic behavior of C. magnoliae. The identification and characterization of membrane proteins involved in sugar uptake might contribute to the elucidation of the selective utilization of fructose to glucose by C. magnoliae at a molecular level.