• Title/Summary/Keyword: Glucose sensitivity

Search Result 301, Processing Time 0.019 seconds

Effect of Chromium Picolinate on Glucose Tolerance and Insulin Sensitivity in the Type I and II Diabetic Rats (1형과 2형 당뇨모델 흰쥐에서 Chromium Picolinate의 당내성과 인슬린 감수성에 대한 영향)

  • 신현진;홍정희;고현철;신인철;강주섭;최호순;김태화;김동선;엄애선
    • Biomolecules & Therapeutics
    • /
    • v.9 no.4
    • /
    • pp.277-281
    • /
    • 2001
  • Chromium is an essential nutrient and participates in glucose and lipid metabolism in human beings and animals. The present study was conducted to assess the effects of chromium picolinate (Cr-pic) on glucose tolerance and insulin sensitivity in type I and ll diabetic rats. The experimental groups were type I diabetic (streptozotocin-induced: 40 mg/kg, i.p.) and type II diabetic (Goto-Kakizaki rats) models. Each group was subdivided into control. low-dose and high-dose of Cr-pic treated groups. The Cr-pic was orally administered with Cr-pic (100 mg/kg for low dose group and 200 mg/kg for high dose group) for 4 weeks. And then we performed intraperitoneal glucose tolerance test (IPGTT) and insulin sensitivity test (ITT). The glucose tolerance test was carried out by inection of glucose (2 g/kg, i.p.). The peripheral insulin sensitivity test was con- ducted by injection of insulin (5 units/kg, s.c.) and glucose. We performed determining of blood glucose concentration at 0, 10, 30, 60, 90, and 120 min using automated glucose analyzer. The plasma insulin concentration was determined by rat insulin EIA kit. Administration of Cr-pic improved weight gain in all group s with higher significant in the low-dose group. There was no significance between the control and the Cr-pic treated groups in the area under the blood glucose curve and serum insulin concentration plots of IPGTT and peripheral ITT in type I diabetic rats. But Cr-pic treated groups showed significantly lower levels of the area under the blood glucose currie during IPGTT and ITT and the high-dose group showed less effects compared with the low-dose group in the type II diabetic rats. The plasma insulin concentration of both diabetic groups was not influenced by Cr-pic supplementation. We can conclude that chromium picolinate may improve the endogenous and exogenous insulin action and peripheral insulin sensitivity in type II diabetic rats.

  • PDF

Fabrication of Polyimide Film Electrode by Laser Ablation and Application for Electrochemical Glucose Biosensor (Laser ablation을 이용한 폴리이미드 필름 전극제조 및 전기화학적 글루코오즈 바이오센서 응용)

  • Park, Deog-Su
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.357-363
    • /
    • 2013
  • An ultraviolet pulsed laser ablation of polyimide film coated with platinum has been used to enhance the sensitivity for the application as an electrochemical biosensor. Densely packed cones are formed on polyimide surface after UV irradiation which results in increase of surface area. In order to apply the sensitivity improvement of laser ablated polyimide film electrodes, the glucose oxidase modified biosensor was fabricated by using an encapsulation in the gel matrix through sol-gel transition of tetraethoxysliane on the surface of laser ablated polyimide film. The optimum conditions for glucose determination have been characterized with respect to the applied potential and pH. The linear range and detection limit of glucose detection were from 2.0 mM to 18.0 mM and 0.18 mM, respectively. The sensitivity of glucose biosensors fabricated with laser ablated polyimide film is about three times higher than that of plain polyimide film due to increase in surface area by laser ablation.

Effects of Non-protein Energy Intake on the Concentrations of Plasma Metabolites and Insulin, and Tissue Responsiveness and Sensitivity to Insulin in Goats

  • Fujita, Tadahisa;Kajita, Masahiro;Sano, Hiroaki;Shiga, Akio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.1010-1018
    • /
    • 2006
  • A glucose clamp technique was used to investigate the effects of non-protein energy intake on tissue responsiveness and sensitivity to insulin for glucose metabolism in intact adults male goats. Three goats were fed diets at 1.0, 1.5 and 2.0 times of ME for maintenance, each for 21 d. Crude protein intake was 1.5 times of maintenance requirement in each treatment. Tissue responsiveness and sensitivity to insulin were evaluated using a hyperinsulinemic euglycemic clamp technique with four levels of insulin infusion, beginning at 13 h after feeding. Concentrations of plasma metabolites and insulin were also measured at 3, 6 and 13 h after feeding, for evaluating effects of non-protein energy intake on the metabolic status of the animals. Increasing non-protein energy intake prevented an increase in plasma NEFA concentration at 13 h after feeding (p = 0.03). Plasma urea-nitrogen and total amino-nitrogen concentrations decreased (p<0.01) and increased (p = 0.03), respectively, with increasing non-protein energy intake across time relating to feeding. Plasma insulin concentration was unaffected (p = 0.43) by non-protein energy intake regardless of time relating to feeding. In the glucose clamp experiment, increasing non-protein energy intake decreased numerically (p = 0.12) the plasma insulin concentration at half-maximal glucose infusion rate (insulin sensitivity), but did not affect (p = 0.60) maximal glucose infusion rate (tissue responsiveness to insulin). The present results suggest that an increase in non-protein energy intake may enhance insulin sensitivity for glucose metabolism, unlike responsiveness to insulin, in adult male goats. The possible enhancement in insulin sensitivity may play a role in establishing anabolic status in the body, when excess energy is supplied to the body.

Enhancement of Electrocatalytic Activity upon the Addition of Single Wall Carbon Nanotube to the Redox-hydrogel-based Glucose Sensor

  • Kim, Suk-Joon;Quan, Yuzhong;Ha, Eunhyeon;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.33-37
    • /
    • 2021
  • In electrochemical glucose sensing, the enhancement of the sensitivity and the response time is essential in developing stable and reliable sensors, especially for continuous glucose monitoring. We developed a method to increase the sensitivity and to shorten the response time for the sensing upon the appropriate addition of single wall carbon nanotube onto the osmium polymer-based hydrogel electrode. Also, the background stabilization is dramatically enhanced.

Moderate diet-induced weight loss is associated with improved insulin sensitivity in middle-aged healthy obese Korean women

  • Lee, Hye-Ok;Yim, Jung-Eun;Kim, Young-Seol;Choue, Ryowon
    • Nutrition Research and Practice
    • /
    • v.8 no.4
    • /
    • pp.469-475
    • /
    • 2014
  • BACKGROUND/OBJECTIVE: The goal of the present study was to investigate the effects of moderate caloric restriction on ${\beta}$-cell function and insulin sensitivity in middle-aged obese Korean women. SUBJECTS/METHODS: Fifty-seven obese pre-menopausal Korean women participated in a 12-week calorie restriction program. Data on total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), triglycerides (TG), and fasting serum levels of glucose, insulin, C-peptide, blood pressure, leptin and anthropometrics were collected. A dietary intake assessment was based on three days of food recording. Additionally, ${\beta}$-cell function [homeostasis model assessment of ${\beta}$-cell (HOMA-${\beta}$), insulinogenic index (ISI), C-peptide:glucose ratio, and area under curve insulin/glucose ($AUC_{ins/glu}$)] and insulin sensitivity [homeostasis model assessment for insulin resistance (HOMA-IR), Quantitative insulin-sensitivity check index (QUICKI) and Matsuda index (MI)] were recorded. RESULTS: When calories were reduced by an average of 422 kcal/day for 12 weeks, BMI (-2.7%), body fat mass (-10.2%), and waist circumference (-5%) all decreased significantly (P < 0.05). After calorie restriction, weight, body fat percentage, hip circumference, BP, TC, HDL-C, LDL-C, plasma glucose at fasting, insulin at fasting and 120 min, $AUC_{glu}$ and the insulin area under the curve all decreased significantly (all P < 0.05), while insulin sensitivity (HOMA-IR, QUICKI and Matsuda index) measured by OGTT improved significantly (P < 0.01). CONCLUSIONS: Moderate weight loss due to caloric restriction with reduction in insulin resistance improves glucose tolerance and insulin sensitivity in middle-aged obese women and thereby may help prevent the development of type 2 diabetes mellitus.

Gynura procumbens extract improves insulin sensitivity and suppresses hepatic gluconeogenesis in C57BL/KsJ-db/db mice

  • Choi, Sung-In;Lee, Hyun-Ah;Han, Ji-Sook
    • Nutrition Research and Practice
    • /
    • v.10 no.5
    • /
    • pp.507-515
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: This study was designed to investigate whether Gynura procumbens extract (GPE) can improve insulin sensitivity and suppress hepatic glucose production in an animal model of type 2 diabetes. MATERIALS/METHODS: C57BL/Ksj-db/db mice were divided into 3 groups, a regular diet (control), GPE, and rosiglitazone groups (0.005 g/100 g diet) and fed for 6 weeks. RESULTS: Mice supplemented with GPE showed significantly lower blood levels of glucose and glycosylated hemoglobin than diabetic control mice. Glucose and insulin tolerance test also showed the positive effect of GPE on increasing insulin sensitivity. The homeostatic index of insulin resistance was significantly lower in mice supplemented with GPE than in the diabetic control mice. In the skeletal muscle, the expression of phosphorylated AMP-activated protein kinase, pAkt substrate of 160 kDa, and PM-glucose transporter type 4 increased in mice supplemented with GPE when compared to that of the diabetic control mice. GPE also decreased the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase in the liver. CONCLUSIONS: These findings demonstrate that GPE might improve insulin sensitivity and inhibit gluconeogenesis in the liver.

Pharmacodynamic evaluation of hypoglycemic effect of Damtab in healthy adult male volunteers

  • Sahu, Pratap Kumar;Pillai, KK;Saha, Nilanjan;Sharma, Manju;Najmi, AK
    • Advances in Traditional Medicine
    • /
    • v.7 no.2
    • /
    • pp.205-210
    • /
    • 2007
  • The objectives of the study were (1) To evaluate the safety and tolerability of Damtab. (2) To characterize hypoglycemic effect of Damtab, if any. (3) To evaluate insulin sensitivity effect of Damtab, if any. Hypoglycemic effect of Damtab (700 mg and 1,400 mg) were examined. Gliclazide (80 mg) was used as an active control. Placebo was used as control. Breakfast was given, half an hour before dosing whereas lunch, snacks and dinner were given at 6, 10 and 14 h post dose. An oral glucose tolerance test was conducted to calculate the insulin sensitivity index from the values of glucose and insulin during oral glucose tolerance test. Both giclazide 80 mg and Damtab 1,400 mg significantly lowered plasma glucose level up to 6 h. Insulin sensitivity index of Damtab (1,400 mg) was found to be similar to that of placebo. A significant increase in insulin level at 1 h post dose of Damtab (1,400 mg) was observed. Damtab 700 mg shows placebo like effect whereas Damtab 1,400 mg possesses hypoglycemic effect.

Glucose Sensing Properties of Electrospinning-Synthesized ZnO Nanofibers (전기방사로 합성된 산화아연 나노섬유의 Glucose 감응특성)

  • Choi, Jong-Myoung;Byun, Joon-Hyuk;Kim, Sang Sub
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.655-658
    • /
    • 2015
  • The development of glucose biosensors has been attracting much attention because of their importance in monitoring glucose in the human body; such sensors are used to diagnose diabetes and related human diseases. Thanks to the high selectivity, sensitivity to glucose detection, and relatively low-cost fabrication of enzyme-immobilized electrochemical glucose sensors, these devices are recognized as one of the most intensively investigated glucose sensor types. In this work, ZnO nanofibers were synthesized using an electrospinning method with polyvinyl alcohol zinc acetate as precursor material. Using the synthesized ZnO nanofibers, we fabricated glucose biosensors in which glucose oxidase was immobilized on the ZnO nanofibers. The sensors were used to detect a wide range of glucose from 10 to 700 M with a sensitivity of $10.01nA/cm^2-{\mu}M$, indicating that the ZnO nanofiber-based glucose sensor can be used for the detection of glucose in the human body. The control of nanograins in terms of the size and crystalline quality of the individual nanofibers is required for improving the glucose-sensing abilities of the nanofibers.

Effects of Dietary Modification on Plasma Glucose and Insulin Sensitivity in Streptozotocin-induced Diabetic Rats

  • Choi, Hyun-Ju
    • Journal of Nutrition and Health
    • /
    • v.30 no.9
    • /
    • pp.1035-1044
    • /
    • 1997
  • There is substantial evidence that insulin sensitivity can be enhanced through appropriate dietary management . In this study, insulin sensitivity was evaluated using and insulin suppression test. Male Sprague-Dawley rats, were caused to be in a diabetic condition by the injection of streptozotocin, and divided into four groups. They were fed one of the following diets for 2 weeks : (group 1) a high-carbohydrate(CHO) low-fat low-fiber diet, (group 2) a high CHO low-fat and high-fiber diet, (group 3) a low-CHO high-fat and low-fiber diet, and (group 4) a low-CHO low-fat diet groups (as comparison between group 1 and group 2 shows). In the low-CHO high-fat diet groups, dietary fiber tended to decrease plasma glucose levels at the end of the experiment, but not significantly (as comparison between group 3 and group 4 shows). The average steady state plasma glucose level in rats on the group 3 diet was the highest among all four groups(p<0.05), indicating the poorest insulin sensitivity . However, high fiber increased insulin sensitivity in rats on the low-CHO high-fat diets(as shows by a comparison between group 3 and group 4). On the other hand , the high-CHO low-fat enhanced insulin sensitivity in rats on the low fiber diet(group 1 and group 3). The degree of enhancement of insulin sensitivity depends on the combination of CHO, fat , and fiber in the diet. In conclusion, this study demonstrates that a low-CHO high-fat low -fiber diet may be deleterious to diabetic rats. In view of insulin sensitivity enhancement , dietary fiber level is irrelevant, as long as the diet has a high-CHO and low-fat level.

  • PDF

Equivalent Circuit Model of Glucose Kinetics (생체내 포도당 동태의 등가회로모델)

  • Yun, Jang-H.;Kim, Min-Chong
    • Journal of Biomedical Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 1981
  • The objective of the present study was to develop an equivalent circuit model of glucose kinetics including the hepatic glucose balance functions which were neglected in the previous compartmental models. Using this circuit model, the insulin resistivity parameter and hepatic glucose sensitivity parameter were estimated in optimal fitting of the model based data of glucose and insulin concentration to the reported clinical intravenous glucose tolerance test(IVGTT) data in normal and diabetic subjects. The addition of the hepatic function in the model has improved the overall performance of the simulation. Also, the computed tissue insulin resistivity and the hepatic glucose sensitivity are shown to be significant in distinguishin four clinical groups of normal and diabetic groups.

  • PDF