• Title/Summary/Keyword: Glucose oxidation

Search Result 242, Processing Time 0.033 seconds

Electrodeposited NiCu Alloy Catalysts for Glucose Oxidation

  • Lim, Ji-Eun;Ahn, Sang Hyun;Jang, Jong Hyun;Park, Hansoo;Kim, Soo-Kil
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2019-2024
    • /
    • 2014
  • NiCu alloys have been suggested as potential candidates for catalysts in glucose oxidation. In this study, NiCu alloys with different compositions were prepared on a glassy carbon substrate by changing the electrodeposition potential to examine the effect of Ni/Cu ratios in alloys on catalytic activity toward glucose oxidation. Cyclic voltammetry and chronoamperometry showed that NiCu alloys had higher catalytic activity than pure Ni and Cu catalysts. Especially, Ni59Cu41 had superior catalytic activity, which was about twice that of Ni at a given oxidation potential. X-ray analyses showed that the oxidation state of Ni in NiCu alloys was increased with the content of Cu by lattice expansion. Ni components in alloys with higher oxidation state were more effective in the oxidation of glucose.

Glucose Oxidation on Gold-modified Copper Electrode

  • Lim, Ji-Eun;Ahn, Sang Hyun;Pyo, Sung Gyu;Son, Hyungbin;Jang, Jong Hyun;Kim, Soo-Kil
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2685-2690
    • /
    • 2013
  • The activities of Au-modified Cu electrodes toward glucose oxidation are evaluated according to their fabrication conditions and physico-chemical properties. The Au-modified Cu electrodes are fabricated by the galvanic displacement of Au on a Cu substrate and the characteristics of the Au particles are controlled by adjusting the displacement time. From the glucose oxidation tests, it is found that the Au modified Cu has superior activity to the pure Au or Cu film, which is evidenced by the negative shift in the oxidation potential and enhanced current density during the electrochemical oxidation. Though the activity of the Au nanoparticles is a contributing factor, the enhanced activity of the Au-modified Cu electrode is due to the increased oxidation number of Cu through the electron transfer from Cu to more electronegative Au. The depletion of electron in Cu facilitates the oxidation of glucose. The stability of the Au-modified Cu electrode was also studied by chronoamperometry.

Effect of Carnosine and Related Compounds on Glucose Oxidation and Protein Glycation In Vitro

  • Lee, Beom-Jun;Park, Jae-Hak;Lee, Yong-Soon;Cho, Myung-Haing;Kim, Young-Chul;Hendricks, Deloy G.
    • BMB Reports
    • /
    • v.32 no.4
    • /
    • pp.370-378
    • /
    • 1999
  • The effects of carnosine and related compounds (CRC) including anserine, homocarnosine, histidine, and ${\beta}$-alanine, found in most mammalian tissues, were investigated on in vitro glucose oxidation and glycation of human serum albumin (HSA). Carnosin and anserine were more reactive with D-glucose than with L-lysine. In the presence of $10\;{\mu}M$ Cu (II), although carnosine and anserine at low concentrations effectively inhibited formation of ${\alpha}$-ketoaldehyde from D-glucose, they increased generation of $H_2O_2$ in a dose-dependent manner. Carnosine, homocarnosine, anserine, and histidine effectively inhibited hydroxylation of salicylate and deoxyribose degradation in the presence of glucose and $10\;{\mu}M$ Cu (II). In the presence of 25 mM D-glucose, copper and ascorbic acid stimulated carbonyl formation from HSA. Except for ${\beta}$-alanine, CRC effectively inhibited the copper-catalyzed carbonyl formation from HSA. The addition of 25 mM D-glucose and/or $10\;{\mu}M$ Cu (II) to low density lipoprotein (LDL) increased formation of conjugated dienes. CRC effectively inhibited the glucose and/or copper-catalyzed LDL oxidation. CRC also inhibited glycation of HSA as determined by hydroxymethyl furfural and lysine with free ${\varepsilon}$-amino group. These results suggest that CRC may play an important role in protecting against diabetic complications by reacting with sugars, chelating copper, and scavenging free radicals.

  • PDF

Electrochemical Oxidation of Glucose at Nanoporous Gold Surfaces Prepared by Anodization in Carboxylic Acid Solutions (카복실산 용액에서 양극산화에 의해 형성된 나노다공성 금 표면상의 전기화학적 글루코오스 산화)

  • Roh, Seongjin;Jeong, Hwakyeung;Lee, Geumseop;Kim, Minju;Kim, Jongwon
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.2
    • /
    • pp.74-80
    • /
    • 2013
  • We investigate the formation of nanoporous gold (NPG) surfaces by anodization in three carboxylic acid (formic acid, acetic acid, and propionic acid) solutions and the electrochemical oxidation of glucose at NPG surfaces. Among three carboxylic acids, formic acid provided the most efficient conditions for NPG formation towards glucose oxidation. The optimized conditions during anodization in formic acid for glucose oxidation were 5.0 V of applied potential and 4 hour of reaction time. Electrocatalytic activities for glucose oxidation at NPG surfaces prepared by anodization in carboxylic acids were examined under the absence and presence of chloride ions, which were compared to those observed at NPG prepared in oxalic acid solutions. The application NPG prepared by optimized anodization conditions in formic acid to the amperometric detection of glucose was demonstrated.

Effect of Dissolved Oxygen Concentration on the Metabolism of Glucose in Pseudomonas putida BM014

  • Park, Won-Jae;Lee, Eun-Yeol;Park, Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.109-111
    • /
    • 1998
  • The effect of dissolved oxygen concentration on the metabolism of glucose in Pseudomonas putida BM014 was investigated. Glucose was completely converted to 2-ketogluconate via extracellular oxidative pathway and then taken up for cell growth under the condition of sufficient dissolved oxygen concentration. On the other hand, oxygen limitation below dissolved oxygen tension (DOT) value of 20% of air saturation caused the shift of glucose metabolism from the extracellular oxidative pathway to the intracellular phosphorylative pathway. Specific activities of hexokinase and gluconate kinase in intracellular phosphorylation pathway decreased as the DOT increased, while 2-ketogluconokinase activity in extracellular oxidative pathway increased under the same condition. This result can be usefully applied to microbial transformation of glucose to 2-ketogluconate, the synthetic precursor for iso-vitamine C, with almost 100% yield via extracellular oxidation by simple DOT control.

  • PDF

A Numerical Coding System (MCRCODE-N) for Identification of Glucose Nonfermenting Gram-Negative Bacilli (숫자표기에 의한 포도당 비발효균의 동정시안(MCRCODE-N))

  • Hong, Seok-Il;Kim, Chung-Suk
    • Journal of Yeungnam Medical Science
    • /
    • v.2 no.1
    • /
    • pp.183-190
    • /
    • 1985
  • The glucose nonfermenting gram-negative bacilli encountered about 10% of all gram-negative bacilli isolated from clinical material. Therefore, a rapid and correct identification of glucose nonfermenting gram-negative bacilli is impostent for a better management of infectious disease. There are many conventional systems for the Identification of glucose nonfermenting gram-negative bacilli but most of them have problems and difficulties. Commercial Kit Systems exist and they are too expensive for dally use 10 Korea because of high cost. Based on 12 selected tests we propose a new code system, MCRCODE-N for rapid and 10-expensive identification of glucose nonfermenting gram-negative bacilli. The selective 12 tests are oxidase, glucose oxidation motility, urease, DNase arginine dehydrolase, nitrate reduction, gelatin Liquefaction, esculin hydrolysis, mannitol oxidation, maltose oxidation, Lactose oxidation. The 12 tests are divided 4 group and then each group has 3 tests. The result of each group is expressed by the number as below. The positive test is given by specific number (1st test = 1, 2nd test = 2, 3rd test = 4), while any negative result is 0. Each 3 numbers of one group are added and make number of 1 digit. Four digit number is refered to the code book of MCRCODE-N system or MCRCODE system using computer (Apple-II model) created by authors. This MCRCODE-N system is suitable ones for our use 10 Korea. We propose the MCRCODEN-N system for clinical use.

  • PDF

Effects of a Hwanggi-tang Ethanol Extract on Glucose Uptake and Metabolism in Murine Myotubes (근육세포주에서 당 흡수 및 대사 조절에 대한 황기탕 에탄올 추출물의 효과)

  • Jang, Chul-yong;Shin, Sun-ho;Shin, Yong-jeen
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.4
    • /
    • pp.599-611
    • /
    • 2020
  • Objectives: The aim of this study was to evaluate the effects of Hwanggi-tang on glucose digestion, uptake, and metabolism in murine C2C12 myotubes. Methods: Hwanggi-tang was prepared according to the Dong-ui-bo-gam (≪東醫寶鑑≫) prescription by 70% ethanol extraction. The effect on glucose digestion was examined by determining the inhibitory effect of Hwanggi-tang on α-glucosidase activity. We also compared and verified the gene and protein expression of genes related to glucose uptake in C2C12 myotubes treated with Hwanggi-tang or insulin. Glucose metabolism was assessed by the expression levels of associated enzymes. Results: Hwanggi-tang caused a dose-dependent inhibition of α-glucosidase activity, induced glucose uptake by activation of the PI3K/Akt/mTOR pathway in the insulin signaling pathway, and promoted glucose oxidation and β-oxidation. Conclusions: Hwanggi-tang exerts an anti-diabetic effect on murine myotubes by inhibiting glucose digestion and inducing glucose uptake and consumption.

Immobilization of Glucose Oxidase on Multi-Wall Carbon Nanotubes for Biofuel Cell Applications

  • JUNG SOO KEUN;CHAE YOUNG RAE;YOON JONG MOON;CHO BYUNG WON;RYU KEUN GARP
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.234-238
    • /
    • 2005
  • Glucose oxidase was immobilized on the carboxylated multi-wall carbon nanotubes (MWNT-COOHs) in the presence of a coulping reagent, 1-ethy1-3-(3-dimethylaminopropy1) carbodiimide. Significant amounts of glucose oxidase were also immobilized on MWNT-COOHs without the coupling reagent. Various conditions for the immobilization of glucose oxidase were optimized. Optimal pH for the maximal activity of the immobilized glucose oxidase shifted to 7 from the optimal pH of 6 for the maximal activity of free enzyme due to the carboxy1 groups on the surface of MWNT-COOHs. An electrode of graphite rod with a diameter of 6 mm was fabricated using the immobilized glucose oxidase. The cyclic voltammetry study of the enzyme electrode revealed that the oxidation of glucose and subsequent transfer of electrons from the oxidation of glucose to the electrode were possible by the immobilized glucose oxidase without a mediator, implying that the enzyme electrode can be utilized for the development of biofuel cells.

The effect of L-carnosine on the rheological characteristics of erythrocytes incubated in glucose media

  • Nam, Jeong-Hun;Kim, Chang-Beom;Shin, Se-Hyun
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.103-108
    • /
    • 2009
  • Hemorheological properties are easily modified by glucose-induced oxidation and glycation. Carnosine, a naturally occurring dipeptide ($\beta$-alanyl-LFull-size image-histidine), has been recently proposed to act as an antioxidant as well as a free-radical scavenger. In the present study, we investigate its protective and rejuvenating effects in erythrocytes that are exposed to glucose-rich plasma. Erythrocytes that were incubated in glucose solutions were treated with different concentrations of carnosine and for different incubation times. Their hemorheological alterations were examined. The results reveal that the presence of carnosine effectively prevented these rheological alterations in a concentration-dependent manner in glucose-rich media. It is proposed that moderate concentrations of carnosine might be further explored as potential therapeutic agents for pathologies that involve hemorheological modification.

Regulation of Electrochemical Oxidation of Glucose by lonic Strength-Controlled Virtual Area of Nanoporous Platinum Electrode

  • Kim, Jong-Won;Park, Se-Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.203-206
    • /
    • 2007
  • Electrochemical reaction of glucose was regulated by the electrochemically active area of nanoporous platinum, which is controlled by ionic strength. The profile of the oxidation current of glucose vs. ionic strength was identical with that of the electrochemically active area. This result confirms that the nanopores are virtually opened for the electrochemical reaction of glucose when the ionic strength climbs over a specific concentration and implies that the electrochemical reactions on nanoporous electrode surfaces can be controlled by concentration of electrolyte.