• Title/Summary/Keyword: Glucose dehydrogenase

Search Result 477, Processing Time 0.024 seconds

Studies on the metabolic activities of Pseudomonas sp. in different carbon sources (Pseudomonas sp.의 탄소원에 따른 대사활성에 관한 연구)

  • 배광성;이영녹
    • Korean Journal of Microbiology
    • /
    • v.20 no.4
    • /
    • pp.161-172
    • /
    • 1982
  • In order to compare the metabolic activities of methanol utilizing bacteria, Pseudomonas sp. grown in different carbon sources, changes in respiratory activities, prinicipal enzyme activities for the energy metabolism, and the macromolecular compositions of the cells grown on methanol or glucose were measured. 1. The respiratory activity of cells grown on methanol was higher than that of cells grown on glucose, while glucose exhibited the highest $O_2-consumption$ rate among the different respiratory substrates. 2. TRhe activity of hydroxy pyruvate reductase which participates in serine pathway was high in the cells grown on methanol. However, activities of NAD-linked alcohol dehydrogenase, formaldehyde dehydrogenase and formate dehydrogenase were slightly lower in the cells grown on glucose thant on methanol. 4. For succinic dehydrogenase and malic dehydrogenase which take part in TCA cycle, the specific activities were higher in the cells grown on methanol than in those grown on glucose. No activity of glucose-6-phosphate dehydrogenase, which participates in pentose monophosphate shunt, was detectable in the cells grown on either carbon sources. 5. Protein contents of the cells grown on methanol increased relatively compared with those of the cells grown on glucose. However, there are no changes in the contents of carbohydrate and nucleic acid.

  • PDF

Function of heat shock protein and Immune response (Heat shock protein의 기능과 면역 반응)

  • 김세진
    • The Microorganisms and Industry
    • /
    • v.25 no.1
    • /
    • pp.2-9
    • /
    • 1999
  • A study was made on enzymes of carbohydrate metabolism in T. concretivorus grown with and without glucose. The present results show that T. concretivorus possesses high activities of pentose shunt pathway and related enzymes, glucokinase, G-6-P dehydrogenase, 6-PG dehydrogenase, and phosphoglucoisomerase, but low activities of enzymes unique to EMP(fructose-1,6-diphosphate aldolase). Although the synthesis of the latter enzymes remains largely unaffected by the growth enviroment, that of the former is stimulated by glucose. And the failure to detect ED pathway enzymes in cells grown in thiosulate or thiosulfate-glucose medium eliminates the ED pathway as a significant route of glucose catabolism in T.concretivorus. These results suggest that pentose shunt pathway performs an energetic role in glucose metabolism by T.concretivorus with EMP as a subway. The absence of ED pathway and the presence of pentose shunt pathway which is the major route of catabolism in T.concretivorus are similar to those of other obligately chemolitho-trophic thiobacilli. The G-6-P and 6-PG dehydrogenase are both NAD and NADP specific, but MAD predominant. However, the 3-PGAL dehydrogenase is only NAD specific. Since the specific activity of 3-PGAL generated from glucose is converted mainly into pyruvate which is channeled into the TCA cycle. All enzymes of the TCA cycle tested and NADH oxidase are detected in the cells of T.concretivorus grown in thiosulfate. The specific activities of fumarase and isocitrate dehydrogenase are high and others are low. The presence of two isocitrate dehydrogenase (NAD-and NADP-linked) may have important regulatory function for this organism. The activity of NAD-oxidase, which is implicated in the energy generating metabolism, was very high in the crude cell-free extract of T.concretivorus, recording 55.11 m.mu. mole/min/mg protein. This well coincides with the fact that activities of NAD-linked G-6-P dehydrogenase, 6-PG dehydrogenase and 3-PGAL dehydrogenase were high.

  • PDF

The enzymatic Studies on Metabolic Pathways in Thiobacillus conctetivorus (Thiobacillus concretivorus의 대사경로에 관한 효소학적 연구)

  • 하영칠
    • Korean Journal of Microbiology
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 1973
  • A study was made on enzymes of carbohydrate metabolism in T. concretivorus grown with and without glucose. The present results show that T. concretivorus possesses high activities of pentose shunt pathway and related enzymes, glucokinase, G-6-P dehydrogenase, 6-PG dehydrogenase, and phosphoglucoisomerase, but low activities of enzymes unique to EMP(fructose-1, 6-diphosphate aldolase). Although the synthesis of the latter enzymes remains largely unaffected by the growth enviroment, that of the former is stimulated by glucose. And the failure to detect ED pathway enzymes in cells grown in thiosulate or thiosulfate-glucose medium eliminates the ED pathway as a significant route of glucose catabolism in T.concretivorus. These results suggest that pentose shunt pathway performs an energetic role in glucose metabolism by T.concretivorus with EMP as a subway. The absence of ED pathway and the presence of pentose shunt pathway which is the major route of catabolism in T.concretivorus are similar to those of other obligately chemolitho-trophic thiobacilli. The G-6-P and 6-PG dehydrogenase are both NAD and NADP specific, but MAD predominant. However, the 3-PGAL dehydrogenase is only NAD specific. Since the specific activity of 3-PGAL generated from glucose is converted mainly into pyruvate which is channeled into the TCA cycle. All enzymes of the TCA cycle tested and NADH oxidase are detected in the cells of T.concretivorus grown in thiosulfate. The specific activities of fumarase and isocitrate dehydrogenase are high and others are low. The presence of two isocitrate dehydrogenase (NAD-and NADP-linked) may have important regulatory function for this organism. The activity of NAD-oxidase, which is implicated in the energy generating metabolism, was very high in the crude cell-free extract of T.concretivorus, recording 55.11 m$\mu$ mole/min/mg protein. This well coincides with the fact that activities of NAD-linked G-6-P dehydrogenase, 6-PG dehydrogenase and 3-PGAL dehydrogenase were high.

  • PDF

Hypoglycemic Action of Red Ginseng Components (II). Investigation of the Effect of Fat Soluble Fraction from Red Ginseng on Enzymes Related to Glucose Metabolism in Cultured Rat Hapatocytes (홍삼 성분의 혈당강하작용 연구 (ll) :쥐의 배양 간세포의 당대사 관련 효소 활성에 미치는 홍삼 지용성 분획의 영향 조사)

  • 이현아;심희선
    • Journal of Ginseng Research
    • /
    • v.22 no.1
    • /
    • pp.51-59
    • /
    • 1998
  • In this study, rat hepatocytes known to have active glucose metabolism were obtained to investigate the hypoglycemic action of fat soluble fraction of red ginseng by using the liver perfusion technique and incubated in two different media-one containing insulin and glucagon (control group), and the other containing glucagon only The activities of main regulating enzymes, such as glucokinase, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenate, and glucose 6-phosphatase, related to metabolic pathways of glucose in these two kinds of hepatocytes were compared between these two groups and the effects of addition of fat soluble fraction ($10^1$~$10^4$%) from red ginseng to these two groups on these enzymes were also detected. The results were as follows. The specific activity of enzymes such as glucokinase, flucorse 6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase related to glucose-consuming pathways of insulin-deficient group was much less than control one. However, their decreased activity was recovered after the addition of fat-soluble fraction at all range of concentrations. The specific activity of these enzymes after the addition of ginseng components to the control group was also increased. On the other hand, the specific activity of glucose 6-phosphatase related to glucose-producing pathway of insulin-deficient group was much higher than control one, but their increased activity was decreased obviously after the addition of fat soluble fraction at all range of concentrations. The same results were observed after the addition of fat-soluble fraction to the control group. These results suggest that the red ginseng saponin components might be effective on diabetic hyperglycemia by regulating the activity of enzymes related to glucose metabolism directly and/or indirectly. The effects of fat-soluble fraction ($10^2$%) and ginsenosides (mixture, $Rb_1$ and $Rg_1$, $10^4$%) on hypoglycemic action were compared. As a result, they showed considerable effect on hyperglycemia, but the best eff ect on the activities of glucokinase and glucose 6-phosphate dehydrogenase was appeared by ginsenoside $Rb_1$ and that of 6-phosphogluconate dehydrogenase and glucose 6-phosphatase was by ginsenoside mixture.

  • PDF

Cell Biological Studies on the Mechanism of Development and Differentiation Ⅷ 3. Effects of Polyamines on the Activities of Corn Glucose-6-Phosphate Dehydrogenase, 6-Phosphogluconate Dehydrogenase, and Protein Kinase (생체발생 및 분화기구의 세포생물학적 연구 Ⅷ 3. Polyamine이 옥수수 배의 Glucose-6-Phosphate Dehydrogenase, 6-Phosphogluconate Dehydrogenase 및 Protein Kinase 활성에 미치는 영향)

  • Cho, Young Dong
    • Journal of Plant Biology
    • /
    • v.27 no.2
    • /
    • pp.73-80
    • /
    • 1984
  • Palmitoyl CoA was found to inhibit corn embryo axis glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, which were also inhibites by polyamines. However, reversal of inhibition of both enzymes by palmitoyl CoA was made by spermine. Activity of corn embryo axis protein kinase was found to increase steadily after germination. Activation and inhibition of protein kinase were made by MgCl$_2$and all polymines, respectively. Suc results suggest that fatty acid biosynthesis and lypolysis could be regulated to some extent by polyamines in corn embryo axis.

  • PDF

Metanol Metabolism and Extracellular Polysaccharide Biosynthesis in Methylovorus sp. strain SS1 DSM 11726 (Methylovorus sp. strain SS1 DSM 11726의 메탄올 대사와 세포외 다당류 생합성)

  • Kim, Jae. S.;Kim, Si W.;Kim, Young M.
    • Korean Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.207-211
    • /
    • 1998
  • Melhylovorus sp. strain SS1 grown on methanol was found to show activities of key enzymes of the linear route, $NAD^+$-linked formaldehyde and formate dehydrogenases, and the cyclic route, hexulose-6-phosphate synthase, glucose-6-phosphate isomerase, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase, for formaldehyde oxidation. The activities of the cyclic route enzymes were higher than those of the linear route enzymes. The bacterium also exhibited activities of the key enzymes of the ribulose monophosphate and Entner-Doudoroff pathways and transaldolase involved in the formaldehyde assimilation and the enzymes involved in the biosynthesis of extracellular polysaccharide. Cells grown in the presence of 2.3 mM ammonium sulfate were higher in the productivity of extracellular polysaccharide, but lower in the growth yield, than those grown in the presence 7.6 mM ammonium sulfate. The activities of 6-phosphogluconate dehydrogenase, phosphoglucomutase, and UDP-pyrophosphorylase in cells grown under nitrogen-limited condition were higher, but that of 6-phosphogluconate dehydratase/2-keto-3-deoxy-6-phosphogluconate aldolase was lower, than those in cells grown in the presence of sufficient amount of nitrogen source.

  • PDF

Heave Metal Toxicity Test in Moina macrocopa with Glucose-6-phosphate Dehydrogenase Activity (Glucose-6-phosphate dehydrogenase를 이용한 Moina macrocopa의 중금속 독성 검정)

  • Park Yong-seok;Lee Sang-Goo;Lee Seung-Jin;Moon Sung-Kyung;Choi Eun-Joo;Rhie Ki-tae
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.4
    • /
    • pp.305-310
    • /
    • 2003
  • A rapid, inexpensive enzymatic method is proposed for indirect water quality testing in terms of heavy metal toxicity. The activity of glucose-6-phosphate dehydrogenase was applied for heavy metal toxicity test as an effective criterion in water quality. The toxicity of Pb (lead) and Cd (cadmium) for water flea, Moina macrocopa, were evaluated for 2-8 days with variables of mobilization ability. And the reproduction impairment of Moina macrocopa were investigated as the parameter of chronic toxicity test for Pb and Cd. As a result, the EC$_{50}$ for immobilization of Moina macrocopa were Pb and Cd were 1.6749 and 0.4683, respectively. The values of reproductive impairment to Moina macrocopa for Pb and Cd were 9.5938 and 8.3264 in EC$_{50}$ A significant alteration of G6PDH (Glucose-6-phosphate dehydrogenase) activity of Moina macrocopa was observed when Cd and Pb were treated in media. The results obtained indicate that G6PDH activity of Moina macrocopa can be used as an indicative parameter in aquatic toxicity tests for heavy metals.als.

Assay of Glucose-6-phosphate Dehydrogenase in E. coli Cells Ruptured by Phage Ghost (Phage Ghost로 破裂시킨 E. coli 에서 Glucose-6-phosphate Dehydrogenase의 活性度 測定)

  • Yun, Se-Joong
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.142-145
    • /
    • 1968
  • The relative activity of glucose-6-phosphate dehydrogenase in E. coli was measured at 340 $m\mu$ with a spectrophotometer. The synchronized E. coli cells in exponential phase were treated with Phage($T_2$) ghost, and used as a enzyme solution directly. This assay method supposed to be useful for the continuous determination of enzyme activity in E. coli.

  • PDF

Dehydroepiandrosterone supplement increases malate dehydrogenase activity and decreases NADPH-dependent antioxidant enzyme activity in rat hepatocellular carcinogenesis

  • Kim, Jee-Won;Kim, Sook-Hee;Choi, Hay-Mie
    • Nutrition Research and Practice
    • /
    • v.2 no.2
    • /
    • pp.80-84
    • /
    • 2008
  • Beneficial effects of dehydroepiandrosterone (DHEA) supplement on age-associated chronic diseases such as cancer, cardiovascular disease, insulin resistance and diabetes, have been reported. However, its mechanism of action in hepatocellular carcinoma in vivo has not been investigated in detail. We have previously shown that during hepatocellular carcinogenesis, DHEA treatment decreases formation of preneoplastic glutathione S-transferase placental form-positive foci in the liver and has antioxidant effects. Here we aimed to determine the mechanism of actions of DHEA, in comparison to vitamin E, in a chemically-induced hepatocellular carcinoma model in rats. Sprague-Dawley rats were administered with control diet without a carcinogen, diets with 1.5% vitamin E, 0.5% DHEA and both of the compounds with a carcinogen for 6 weeks. The doses were previously reported to have anti-cancer effects in animals without known toxicities. With DHEA treatment, cytosolic malate dehydrogenase activities were significantly increased by ${\sim}5$ fold and glucose 6-phosphate dehydrogenase activities were decreased by ${\sim}25%$ compared to carcinogen treated group. Activities of Se-glutathione peroxidase in the cytotol was decreased siguificantly with DHEA treatment, confirming its antioxidative effect. However, liver microsomal cytochrome P-450 content and NADPH-dependent cytochrome P-450 reductase activities were not altered with DHEA treatment. Vitamin E treatment decreased cytosolic Se-glutathione peroxidase activities in accordance with our previous reports. However, vitamin E did not alter glucose 6-phosphate dehydrogenase or malate dehydrogenase activities. Our results suggest that DHEA may have decreased tumor nodule formation and reduced lipid peroxidation as previously reported, possibly by increasing the production of NADPH, a reducing equivalent for NADPH-dependent antioxidant enzymes. DHEA treatment tended to reduce glucose 6-phosphate dehydrogenase activities, which may have resulted in limited supply for de novo synthesis of DNA via inhibiting the hexose monophophaste pathway. Although both DHEA and vitamin E effectively reduced preneoplastic foci in this model, they seemed to fimction in different mechanisms. In conclusion, DHEA may be used to reduce hepatocellular carcinoma growth by targeting NADPH synthesis, cell proliferation and anti-oxidant enzyme activities during tumor growth.

Expression System for Optimal Production of Xylitol Dehydrogenase (XYL2) in Saccharomyces cerevisiae (출아효모에서 xylitol dehydrogenase (XYL2)의 최적 생산을 위한 발현 시스템 구축)

  • Jung, Hoe-Myung;Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1403-1409
    • /
    • 2017
  • In this study, the xylitol dehydrogenase (XYL2) gene was expressed in Saccharomyces cerevisiae as a host cell for ease of use in the degradation of lignocellulosic biomass (xylose). To select suitable expression systems for the S.XYL2 gene from S. cerevisiae and the P.XYL2 gene from Pichia stipitis, $pGMF{\alpha}-S.XYL2$, $pGMF{\alpha}-P.XYL2$, $pAMF{\alpha}-S.XYL2$ and $pAMF{\alpha}-P.XYL2$ plasmids with the GAL10 promoter and ADH1 promoter, respectively, were constructed. The mating factor ${\alpha}$ ($MF{\alpha}$) signal sequence was also connected to each promoter to allow secretion. Each plasmid was transformed into S. cerevisiae $SEY2102{\Delta}trp1$ strain and the xylitol dehydrogenase activity was investigated. The GAL10 promoter proved more suitable than the ADH1 promoter for expression of the XYL2 gene, and the xylitol dehydrogenase activity from P. stipitis was twice that from S. cerevisiae. The xylitol dehydrogenase showed $NAD^+$-dependent activity and about 77% of the recombinant xylitol dehydrogenase was secreted into the periplasmic space of the $SEY2102{\Delta}trp1/pGMF{\alpha}-P.XYL2$ strain. The xylitol dehydrogenase activity was increased by up to 41% when a glucose/xylose mixture was supplied as a carbon source, rather than glucose alone. The expression system and culture conditions optimized in this study resulted in large amounts of xylitol dehydrogenase using S. cerevisiae as the host strain, indicating the potential of this expression system for use in bioethanol production and industrial applications.