• Title/Summary/Keyword: Gluconeogenic proteins

Search Result 2, Processing Time 0.015 seconds

Effect of active ingredients in the Citrus fruits on the proliferation of hepatocellular carcinoma cells (감귤 내 생리활성성분이 간암세포의 생존에 미치는 영향)

  • Kim, Soo Jung;Park, Deok Bae
    • Journal of Medicine and Life Science
    • /
    • v.15 no.1
    • /
    • pp.6-11
    • /
    • 2018
  • Previous studies have suggested that Citrus fruits might suppress the proliferation of various cancer cells. However, little is known about any specific ingredients in the extract of Citrus fruits to exert its anti-proliferative activity in cancer cells. The present study aimed to identify the active ingredients in Citrus fruits to suppress the proliferation of rat hepatocellular carcinoma cells. Among tested compounds, two polymethoxylated flavones (nobiletin and tangeritin) showed significant anti-proliferative activity whereas other compounds (synephrine, rutin, hesperidin) did not. Interestingly, nobiletin as well as tangeritin also decreased the protein amount of gluconeogenic enzymes, PEPCK and G6Pase. The possible involvement of gluconeogenic activity in the proliferation of hepatocellulacarcinoma cells are further to be investigated.

Anti-hyperglycemic effects and signaling mechanism of Perilla frutescens sprout extract

  • Kim, Da-Hye;Kim, Sang Jun;Yu, Kang-Yeol;Jeong, Seung-Il;Kim, Seon-Young
    • Nutrition Research and Practice
    • /
    • v.12 no.1
    • /
    • pp.20-28
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Perilla frutescens (L.) Britton var. (PF) sprout is a plant of the labiate family. We have previously reported the protective effects of PF sprout extract on cytokine-induced ${\beta}-cell$ damage. However, the mechanism of action of the PF sprout extract in type 2 diabetes (T2DM) has not been investigated. The present study was designed to study the effects of PF sprout extract and signaling mechanisms in the T2DM mice model using C57BL/KsJ-db/db (db/db) mice. MATERIALS/METHODS: Male db/db mice were orally administered PF sprout extract (100, 300, and 1,000 mg/kg of body weight) or rosiglitazone (RGZ, positive drug, 1 mg/kg of body weight) for 4 weeks. Signaling mechanisms were analyzed using liver tissues and HepG2 cells. RESULTS: The PF sprout extract (300 and 1,000 mg/kg) significantly reduced the fasting blood glucose, serum insulin, triglyceride and total cholesterol levels in db/db mice. PF sprout extract also significantly improved glucose intolerance and insulin sensitivity, decreased hepatic gluconeogenic protein expression, and ameliorated histological alterations of the pancreas and liver. Levels of phosphorylated AMP-activated protein kinase (AMPK) protein expression also increased in the liver after treatment with the extract. In addition, an increase in the phosphorylation of AMPK and decrease in the phosphoenolpyruvate carboxykinase and glucose 6-phosphatase proteins in HepG2 cells were also observed. CONCLUSIONS: Our results sugges that PF sprout displays beneficial effects in the prevention and treatment of type 2 diabetes via modulation of the AMPK pathway and inhibition of gluconeogenesis in the liver.