• 제목/요약/키워드: Glomeromycota

검색결과 16건 처리시간 0.026초

전남 완도에 서식하는 동백나무와 그 주변 식물의 근권에 분포하는 수지상균근균의 다양성 (Diversity of Arbuscular Mycorrhizal Fungi in Rhizospheres of Camellia japonica and Neighboring Plants Inhabiting Wando of Korea)

  • 이은화;가강현;엄안흠
    • 한국균학회지
    • /
    • 제42권1호
    • /
    • pp.34-39
    • /
    • 2014
  • 완도의 동백나무 자생지역에서 동백나무의 근권과 주변 일반 식물의 근권 토양을 수집하여 토양 내 수지상균근균(AMF)의 다양성 및 군집 구조를 확인하였다. 분석 결과 두 근권은 모두 Acaulospora mellea 포자로 우점되어 있지만 동백나무 근권에 비해 일반 기주식물의 근권에서 AMF종 다양성 지수와 종 수 및 포자 수가 더 높게 나타나는 경향을 확인하였다. 기주식물의 종류에 상관없이 A. mellea가 높은 빈도로 출현하는 것으로 보아 A. mellea가 다른 AMF종에 비해 산림 토양 및 목본 식물에 특이적으로 적응된 것으로 생각된다. 두 근권에서 발견된 AMF 군집간의 유사도를 분석한 결과 동백나무의 근권에서 발견된 AMF 군집간의 유사도가 동백나무 근권 AMF 군집 일반 기주식물 근권 AMF 군집 간의 유사도나 일반 기주식물 근권 AMF 군집간의 유사도에 비해 더 높은 것으로 나타났다. 이는 동백나무 근권이 다른 일반 기주식물의 근권과는 다른 독특한 AMF 군집 구조를 형성하고 있으며, 식물의 근권 주변의 AMF 군집은 기주식물에 의해 유의미한 수준으로 달라질 수 있음을 보여준다.

폐광산 지역의 근권 토양에 분포하는 수지상균근균 포자의 다양성 (Spore Diversity of Arbuscular Mycorrhizal Fungi in a Post-mining Area in Korea)

  • 박혁;이은화;가강현;엄안흠
    • 한국균학회지
    • /
    • 제44권2호
    • /
    • pp.82-86
    • /
    • 2016
  • 충북 제천의 폐광산 지역의 근권 토양과 인근 일반 산림 지역의 근권 토양을 수집하여 토양 내의 수지상균근균(AMF)의 다양성 및 군집 구조를 확인하였다. 폐광산 지역의 근권 토양은 Acaulospora mellea, 일반 산림 지역의 토양은 Ambispora leptoticha가 우점하는 것을 확인하였다. 군집 구조를 분석한 결과, 폐광산 지역의 근권 토양에서 일반 산림 지역의 근권 토양보다 AMF 포자 수가 많은 것을 확인하였고, 두 지역의 종 다양성 지수에는 유의미한 차이가 존재하지 않았으나 일반 산림 토양의 군집 내 유사도 지수가 폐광산 지역의 근권 토양보다 유의미한 수준으로 높게 나타나는 것을 알 수 있었다. 따라서 본 연구는 교란의 차이에 의해 AMF의 군집이 달라질 수 있음을 보여준다.

Application of Arbuscular Mycorrhizal Fungi during the Acclimatization of Alpinia purpurata to Induce Tolerance to Meloidogyne arenaria

  • da Silva Campos, Maryluce Albuquerque;da Silva, Fabio Sergio Barbosa;Yano-Melo, Adriana Mayumi;de Melo, Natoniel Franklin;Maia, Leonor Costa
    • The Plant Pathology Journal
    • /
    • 제33권3호
    • /
    • pp.329-336
    • /
    • 2017
  • An experiment was conducted to evaluate the tolerance of micropropagated and mycorrhized alpinia plants to the parasite Meloidogyne arenaria. The experimental design was completely randomized with a factorial arrangement of four inoculation treatments with arbuscular mycorrhizal fungi (AMF) (Gigaspora albida, Claroideoglomus etunicatum, Acaulospora longula, and a non-inoculated control) in the presence or absence of M. arenaria with five replicates. The following characteristics were evaluated after 270 days of mycorrhization and 170 days of M. arenaria inoculation: height, number of leaves and tillers, fresh mass of aerial and subterranean parts, dry mass of aerial parts, foliar area, nutritional content, mycorrhizal colonization, AMF sporulation, and the number of galls, egg masses, and eggs. The results indicated a significant interaction between the treatments for AMF spore density, total mycorrhizal colonization, and nutrient content (Zn, Na, and N), while the remaining parameters were influenced by either AMF or nematodes. Plants inoculated with A. longula or C. etunicatum exhibited greater growth than the control. Lower N content was observed in plants inoculated with AMF, while Zn and Na were found in larger quantities in plants inoculated with C. etunicatum. Fewer galls were observed on mycorrhized plants, and egg mass production and the number of eggs were lower in plants inoculated with G. albida. Plants inoculated with A. longula showed a higher percentage of total mycorrhizal colonization in the presence of the nematode. Therefore, the association of micropropagated alpinia plants and A. longula enhanced tolerance to parasitism by M. arenaria.

Responses of Guava Plants to Inoculation with Arbuscular Mycorrhizal Fungi in Soil Infested with Meloidogyne enterolobii

  • Campos, Maryluce Albuquerque Da Silva;Silva, Fabio Sergio Barbosa Da;Yano-Melo, Adriana Mayumi;Melo, Natoniel Franklin De;Pedrosa, Elvira Maria Regis;Maia, Leonor Costa
    • The Plant Pathology Journal
    • /
    • 제29권3호
    • /
    • pp.242-248
    • /
    • 2013
  • In the Northeast of Brazil, expansion of guava crops has been impaired by Meloidogyne enterolobii that causes root galls, leaf fall and plant death. Considering the fact that arbuscular mycorrhizal Fungi (AMF) improve plant growth giving protection against damages by plant pathogens, this work was carried out to select AMF efficient to increase production of guava seedlings and their tolerance to M. enterolobii. Seedlings of guava were inoculated with 200 spores of Gigaspora albida, Glomus etunicatum or Acaulospora longula and 55 days later with 4,000 eggs of M. enterolobii. The interactions between the AMF and M. enterolobii were assessed by measuring leaf number, aerial dry biomass, $CO_2$ evolution and arbuscular and total mycorrhizal colonization. In general, plant growth was improved by the treatments with A. longula or with G. albida. The presence of the nematode decreased arbuscular colonization and increased general enzymatic activity. Higher dehydrogenase activity occurred with the A. longula treatment and $CO_2$ evolution was higher in the control with the nematode. More spores and higher production of glomalin-related soil proteins were observed in the treatment with G. albida. The numbers of galls, egg masses and eggs were reduced in the presence of A. longula. Inoculation with this fungus benefitted plant growth and decreased nematode reproduction.

Salinity affects microbial community structure in saemangeum reclaimed land

  • Kim, Kiyoon;Samaddar, Sandipan;Ahmed, Shamim;Roy, Choudhury Aritra;Sa, Tongmin
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.364-364
    • /
    • 2017
  • Saemangeum reclaimed land is a part of Saemangeum Development Project. Most of the persistent problems of Saemangeum reclaimed land remain to be related to soil salinity. Soil salinity is a major abiotic factor related to microbial community structure and also fungi have been reported to be more sensitive to salinity stress than bacteria. The aim of this study was conducted to investigate the effect of soil salinity levels on the microbial communities in Saemangeum reclaimed land using 454 pyrosequencing analysis. Soil samples was collected from 12 sites of in Saemangeum reclaimed land. For pyrosequencing, 27F/518R (bacteria) and ITS3/ITS4 (fungi) primers were used containing the Roche 454 pyrosequencing adaptor-key-linker (underlined) and unique barcodes (X). Pyrosequencing was performed by Chun's Lab (Seoul, Korea) using the standard shotgun sequencing reagents and a 454 GS FLX Titanium sequencing System (Roche, Inc.). In the soil samples, Proteobacteria (bacteria) and Ascomycota (fungi) shows the highest relative abundance in all the soil sample sites. Proteobacteria, Bacteroidetes, Plantomycetes, Gemmatimonadetes and Parcubacteria were shown to have significantly higher abundance in high salinity level soils than low salinity level soils, while Acidobacteria and Nitrospirae has significantly higher relative abundance in low salinity level soils. The abundance of fungal, Ascomycota has the highest relative abundance in soil samples, followed by Basidiomycota, Chlorophyta, Zygomycota and Chytridiomycota. Basidiomycota, Zygomycota, Glomeromycota and Cerozoa were show significantly higher relative abundance in low salinity level soils. The principal coordinate analysis (PCoA) and correlation analysis shown to salinity-related soil parameters such as ECe, Na+, SAR and EPS were affected to bacterial and fungal community structure. Proteobacteria, Bacteroidetes, Plantomycetes exhibited significantly positive correlation with soil salinity, while Acidobacteria exhibited significantly negative correlation. In the case of fungal community, Basidiomycota and Zygomycota were seen show significantly negative correlation with salinity related soil parameters. These results suggest that provide understanding effect of soil salinity on microbial community structure and correlation of microbial community with soil parameters in Saemangeum reclaimed land.

  • PDF

유기농 옥수수밭에서 경운이 토양 유기물 함량 및 미생물군집에 미치는 영향 (Effects of Tillage on Organic Matters and Microbial Communities in Organically Cultivated Corn Field Soils)

  • 안달래;안난희;김다혜;한병학;유재홍;박인철;안재형
    • 한국환경농학회지
    • /
    • 제39권1호
    • /
    • pp.65-74
    • /
    • 2020
  • BACKGROUND: Soil carbon sequestration has been investigated for a long time because of its potential to mitigate the greenhouse effect. No- or reduced tillage, crop rotations, or cover crops have been investigated and practiced to sequester carbon in soils but the roles of soil biota, particularly microorganisms, have been mostly ignored although they affect the amount and stability of soil organic matters. METHODS AND RESULTS: In this study we analyzed the organic matter and microbial community in organically cultivated corn field soils where no-tillage (NT) or conventional tillage (CT) had been practiced for about three years. The amounts of organic matter and recalcitrant carbon pool were 18.3 g/kg dry soil and 4.1 g C/kg dry soil, respectively in NT soils, while they were 12.4 and 2.5, respectively in CT soils. The amounts of RNA and DNA, and the copy numbers of bacterial 16S rRNA genes and fungal ITS sequences were higher in NT soils than in CT soils. No-tillage treatment increased the diversities of soil bacterial and fungal communities and clearly shifted the bacterial and fungal community structures. In NT soils the relative abundances of bacterial phyla known as copiotrophs, Betaproteobacteria and Bacteroidetes, increased while those known as oligotrophs, Acidobacteria and Verrucomicrobia, decreased compared to CT soils. The relative abundance of a fungal phylum, Glomeromycota, whose members are known as arbuscular mycorrhizal fungi, was about two time higher in NT soils than in CT soils, suggesting that the higher amount of organic matter in NT soils is related to its abundance. CONCLUSION: This study shows that no-tillage treatment greatly affects soil microbial abundance and community structure, which may affect the amount and stability of soil organic matter.