• 제목/요약/키워드: Glomerella cingulata

검색결과 51건 처리시간 0.03초

국내에 발생하는 딸기 탄저병 (Anthracnose of Strawberry in Korea)

  • 김홍기;남명현
    • 식물병과 농업
    • /
    • 제5권1호
    • /
    • pp.8-13
    • /
    • 1999
  • Twenty two different disease on strawberry have been reported in Korea. Their occurrence patterns were depended on the varieties cultivated. Fusarium wilt occurred seriously on var. Hokowase, a variety used for the fields or semi-forcing culture. In recent years, however, anthracnose occurred remarkably as the acreage of forcing culture increases. Consequently, anthracnose reduced the stand rate and yield of the strawberry. Average occurrence rate of anthracnose was 36.9% on major strawberry cropping areas. Nyoho and Akihime, which are popular varieties for the forcing culture, are considered to be susceptible, but Holiwase and Suhong are resistant against this disease. Colletotrichum gloeosporioides and Glomerella cingulata have been reported as casual agents for this disease in Korea. C. gloeosporoides was recently reported, but C. fragariae, known to be a strong pathogen in foreign countries, has bot been found yet in Korea. These two fungal pathogens showed significant differences in some characteristics such as major infection parts of plant and responses to temperatures as well as benomyl resistance. In addition, C. gloeosporioides is more pathogenic than G. cingulata. Because vinly sheltering is effective for control of anthracnose to protect water disposal of the pathogen during the seedling stages, it is strongly recommend to use this method in conjunction with integrated control programs.

  • PDF

Colletotrichum gloeosporioides Penz에 의한 Neoregelia carolinae Smith var. tricolor Hort. 炭疽病 (A New Anthracnose of Neoregelia carolinae Smith var. tricolor Hort. Caused by Colletotrichum gloeosporioides Penz.)

  • 김완규
    • 한국균학회지
    • /
    • 제15권2호
    • /
    • pp.116-117
    • /
    • 1987
  • 1985년 9월, 경기지방의 꽃 재배온실에서 네오레게리아(Neoregelia carolinae Smith var, tricolor Hort.)에 탄저병징이 심하게 발생하여, 병반에서 병원균을 분리, 동정한 결과 Colletotrichum gloeosporioides Penz.에 의한 것으로 밝혀졌다. 이 균은 PDA배양에서 완전세대 Glomerella cingulata (Stonem.) Spauld. & v. Sch.의 자낭과 자낭포자를 형상하였다. 병징은 2-5mm 크기로 원형 내지 타원형의 적갈색 반점이며, 반점 주위는 황색을 띄었다. 병이 심하게 진전되면 잎의 대부분이 황갈색으로 변하여 말라 죽었다. 이 균의 분생포자현탁액을 네오레게리아에 분무접종한 결과 병원성이 확인되었다. C. gloeosporioides에 의한 네오레게리아 탄저병은 아직까지 보고된 바 없으므로 새로운 탄저병으로 보고한다.

  • PDF

Occurrence of Anthracnose on Highbush Blueberry Caused by Colletotrichum Species in Korea

  • Kim, Wan-Gyu;Hong, Sung-Kee;Choi, Hyo-Won;Lee, Young-Kee
    • Mycobiology
    • /
    • 제37권4호
    • /
    • pp.310-312
    • /
    • 2009
  • A total of 82 isolates of Colletotrichum species were obtained from anthracnose symptoms of highbush blueberry trees grown in the Gochang area of Korea during a disease survey in 2008. Out of the isolates, 75 were identified as Colletotrichum gloeosporioides and the others as C. acutatum based on their morphological and cultural characteristics. Twenty six of C. gloeosporioides isolates produced their teleomorph Glomerella cingulata in PDA culture. Three isolates of each C. gloeosporioides and C. acutatum caused anthracnose symptoms on the leaves by artificial inoculation, which were similar to what was observed in the orchards. Previously in Korea, only C. gloeosporioides has been reported as causing anthracnose in blueberries. This is the first report that C. acutatum causes anthracnose in the highbush blueberry in Korea.

Screening of antifungal activities of Bacillus thuringiensis strains for the development of biocontrol agents of plant diseases

  • Kim, G. H.;Kim, D. S.;Lee, D.H.;J. S. Hur;Y. J. Koh
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.99.2-99
    • /
    • 2003
  • An attempt was made to screen antifungal activities of Bacillus thuringiensis strains on various plant pathogens, Botryosphaeria dothidea, Diaporthe actinidiae, Botrytis cinerea, Glomerella cingulata, Colletorichum cocodes, Sclerotinia scierotiorum, Alternaria alternata, Helicobuidium mompa, Bipolaris coicis, Fusarium graminearum and Rhizoctosnia solani. Ten and forty-five strains of B. thuringiensis were isolated from animal feces in Korea and Japan, respectively. Inhibitory effects of the strains on the mycelial growth of the pathogens were examined on the mixed media of potato dextrose agar and nutrient agar. Approximately half of the strains inhibited the mycelial growth of one or more pathogens. Most of the pathogens were inhibited by any of the strains but Fusarium graminearum and Rhizoctonia solani were not inhibited at all. This is the first report that B. thuringiensis shows a potent antifungal activity on plant pathogens in Korea.

  • PDF

Construction of a System for the Strawberry Nursery Production towards Elimination of Latent Infection of Anthracnose Fungi by a Combination of PCR and Microtube Hybridization

  • Furuta, Kazuyoshi;Nagashima, Saki;Inukai, Tsuyoshi;Masuta, Chikara
    • The Plant Pathology Journal
    • /
    • 제33권1호
    • /
    • pp.80-86
    • /
    • 2017
  • One of the major problems in strawberry production is difficulty in diagnosis of anthracnose caused by Colletotrichum acutatum or Glomerella cingulata in latent infection stage. We here developed a diagnostic tool for the latent infection consisting of initial culturing of fungi, DNA extraction, synthesis of PCR-amplified probes and microtube hybridization (MTH) using a macroarray. The initial culturing step is convenient to lure the fungi out of the plant tissues, and to extract PCR-inhibitor-free DNA directly from fungal hyphae. For specific detection of the fungi, PCR primers were designed to amplify the fungal MAT1-2 gene. The subsequent MTH step using the PCR products as probes can replace the laborious electrophoresis step providing us sequence information and high-throughput screening. Using this method, we have conducted a survey for a few thousands nursery plants every year for three consecutive years, and finally succeeded in eliminating latent infection in the third year of challenge.

Early Detection of Epiphytic Anthracnose Inoculum on Phyllosphere of Diospyros kaki var. domestica

  • Lee, Jung-Han;Han, Ki-Soo;Lee, Sun-Cheol;Shim, Chang-Ki;Bae, Dong-Won;Kim, Dong-Kil;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • 제20권4호
    • /
    • pp.247-251
    • /
    • 2004
  • We developed a polyclonal antibody (PAh) based- ELISA system to accurately and rapidly monitor inocula on plant surface before onset of anthracnose. Titer of mouse antisera against conidia of Colletotrichum gloeosporioides was determined by using indirect ELISA. It was high enough to be detectable up to ${\times}$ 12,800 dilutions. Absorbance readings exceeded (1.5even at a 10$^{-5}$ dilution. Sensitivity of PAb was precise enough to detect spore concentration as low as 50 conidia/well by indirect ELISA. PAb1 and PAb2 proved to be very sensitive and highly specific to the target pathogen, C. gloeosporioides, apparently discriminating other unrelated pathogens, or epiphytes. Absorbance values for original isolate exceeded 1.0, but no reaction was detected with other isolates, except three other anthracnose fungi: C. gloeosporioides (pepper strain), Glomerella cingulata (apple strain) and C. lagenarium. Our data suggest that PAb1 and PAb2 bind with the protein epitope that partially contains residues of amino acid, arginine, and Iysine. This kit fulfills the require-ments for detecting inoculums before infection and during onset of anthracnose on sweet persimmon.

Purification and Identification of an Antifungal Agent from Streptomyces sp. KH-614 Antagonistic to Rice Blast Fungus, Pyricularia oryzae

  • Rhee, Ki-Hyeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권6호
    • /
    • pp.984-988
    • /
    • 2003
  • The actinomycete strain KH-6l4 possessed strong antifungal activity, especially antagonistic to the rice blast fungus, Pyricularia oryzae. Diaminopimelic acid (DAP) type and morphological and physiological characteristics, examined by scanning electron microscopy (SEM), indicated that KH-614 belonged to the genus Streptomyces. Antifungal agent produced by this strain was found to be most active, when the strain was cultured in the presence of glucose, polypeptone, and yeast extract (PY) medium for 6 days at $27^{\circ}C$. Based on the spectral report data, MS and NMR, the antifungal agent was identified as cyclo(L-leucyl-L-prolyl). According to the antimicrobial activity test measured by minimal inhibitory concentration (MIC), the cyclo(1eu-pro) exhibited the activity against Candida albicans IAM 4905, Mucor ramannianus IAM6218, Rhizoctonia solani IFO 6218, Aspergilus fumigatus ATCC 42202, Glomerella cingulata IFO 9767, Trichophton mentagrophytes ATCC 18749, and Trichophyton rubrum ATCC 44766, the order of MIC values were 50, 12.5, 5, 50, 25, 5, $5\;\mu\textrm{g}/ml$, respectively. Specifically, cyclo(1eu-pro) was one of the most effective elements against Pyricularia oryzae IFO 5994 with the MIC value of $2.5\;\mu\textrm{g}/ml$, thus indicating that cyclo(leu-pro) is a potential antifungal agent.

Characterization of an Apple Polygalacturonase-Inhibiting Protein (PGIP) That Specifically Inhibits an Endopolygalacturonase (PG) Purified from Apple Fruits Infected with Botryosphaeria dothidea

  • Lee Dong-Hoon;Bae Han-Hong;Kang In-Kyu;Byun Jae-Kyun;Kang Sang-Gu
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권8호
    • /
    • pp.1192-1200
    • /
    • 2006
  • An apple polygalacturonase-inhibiting protein (PGIP), which specifically inhibits endopolygalacturonase (PG, EC 3.2.1.15) from Botryosphaeria dothidea, was purified from Botryosphaeria dothidea-infected apple (Malus domestica cv. Fuji) fruits. The purified apple PGIP had a molecular mass of 40 kDa. The N-terminal amino acid sequence of the purified protein showed high homologies to those of PGIP from pear (100%), tomato (70%), and bean (65%). We also purified polygalacturonase (PG) from B. dothidea. The PG hydrolyzes pectic components of plant cell walls. When the extracted apple pectic cell wall material was treated with purified apple PGIP and B. dothidea PG, the amount of uronic acid released was lower than that treated with B. dothidea PG alone. This result demonstrates that PGIP functions specifically by inhibiting cell wall maceration of B. dothidea PG Furthermore, we characterized the de novo function of the PGIP against PG on the solubilization and depolymerization of polyuronides from cell wall of apple fruits inoculated with B. dothidea. This result demonstrated that the PGIP of plants exhibits one of the direct defense mechanisms against pathogen attack by inhibiting PGs that are released from pathogens for hydrolysis of cell wall components of plants.

High Throughput Screening of Antifungal Metabolites Against Colletotrichum gloeosporioides

  • Ahn, Il-Pyung;Kim, Soon-Ok;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제24권1호
    • /
    • pp.24-30
    • /
    • 2008
  • Colletotrichum gloeosporioides forms an appressorium, a specialized infection structure, to infect its hosts. Among 400 and 600 culture filtrates from fungi and class Actinomycetes, six methanol extracts (A5005, A5314, A5387, A5560, A5597, and A5598) from the class Actinomycetes significantly inhibited appressorium formation in C. gloeosporioides infecting pepper fruits in a dose-dependent manner, while conidial germination was slightly enhanced. Two (A5005 and A5560) of them also exhibited distinctive inhibitory effect on the disease progress of pepper anthracnose. Water fractions of both culture filtrates also specifically inhibited appressorium formation in C. gloeosporioides and pepper anthracnose disease. Inhibition of appressorium formation by culture filtrate of A5005 was partially restored by the exogenous calcium. This results suggests that chemicals within A5005 extents its biological activity through disturbance of intracellular $Ca^{2+}$ regulation during prepenetration morphogenesis by C. gloeosporioides. Together, cell-based and target-oriented screening system used in this study should be applicable for other plant pathogenic fungi prerequisite appressorium formation to infect their hosts.