• Title/Summary/Keyword: Globe temperature

Search Result 119, Processing Time 0.03 seconds

Status and Awareness of Excessive Heat Exposure among Agricultural Workers (일부 농업인의 고온노출에 대한 실태와 인지도 조사)

  • Lee, Dong-Hyun;Kim, Dong-Seob;Chung, Jin-Wook;Lee, Kwan;Lim, Hyun-Sul
    • Journal of agricultural medicine and community health
    • /
    • v.43 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • Objectives: This study was to assess the status and awareness of excessive heat exposure among agricultural workers. Methods: We selected a total of 90 farmers from a villages of Gyeongju-si, during August, 2015. We carried out the temperature measurement for nine times and derived Health Index (HI) and Wet Bulb Globe Temperature (WBGT) index. We compared the HI, WBGT and excessive heat warnings. Status of high temperature exposure, lifestyle, medical history, and awareness about excessive health related exposure illness assessed using survey questionnaires. Results: The matching rates between the WBGT and the HI during excessive heat warning were high, but when it was a non-excessive heat warning, there were days of excessive HI or WBGT. Out of 90 farmers surveyed, 78 cases (86.7%) were in their 60s and older age group. Slightly more than two third (71.1%) farmers were farming in the dawn-morning (71.1%), and the daily working hours were less than 4 hours (54.4 %), but only 23.3% among farmers took regular breaks. Of total, 14.4% farmers experienced excessive heat exposure related illness in order of tiredness, lethargy, dizziness, headaches, and sweating. Overall, the awareness of the danger for excessive heat and the heat wave warnings were high at 70.0% and 74.4%, respectively. Conclusions: Politically, the excessive heat warnings should not be taken into account the simple temperature measurement but, have to consider WBGT and HI standards at the same time. Farmers need to be promoted and educated to prevent the excessive heat related illness by periodically increasing their rest time during farming.

Analysis of Climate Change Researches Related to Water Resources in the Korean Peninsula (한반도 수자원분야 기후변화 연구동향 분석)

  • Lee, Jae-Kyoung;Kim, Young-Oh;Kang, Noel
    • Journal of Climate Change Research
    • /
    • v.3 no.1
    • /
    • pp.71-88
    • /
    • 2012
  • The global warming is probably the most significant issue of concern all over the world and according to the report published by the Intergovernmental Panel on Climate Change (IPCC), the average temperature and extent of global warming around the globe have been on the rise and so have the uncertainty for the future. Such effects of global warming have adverse effects on basic foundation of the mankind in numerous ways and water resource is no exception. The researches on water resources assessment for climate change are significant enough to be used as the preliminary data for researches in other fields. In this research, a total of 124 peer-reviewed publications and 57 reports on the subject of research on climate change related to water resources, that has been carried out so far in Korea has been reviewed. The research on climate change in Korea (inclusive of the peer-reviewed articles and reports) has mainly focused on the future projection and assessment. In the fields of hydrometeorology tendency and projection, the analysis has been carried out with focus on surface water, flood, etc. for hydrological variables and precipitation, temperature, etc. for meteorological variables. This can be attributed to the large, seasonal deviation in the amount of rainfall and the difficulty of water resources management, which is why, the analysis and research have been carried out with focus on those variables such as precipitation, temperature, surface water, flood, etc. which are directly related to water resources. The future projection of water resources in Korea may differ from region to region; however, variables such as precipitation, temperature, surface water, etc. have shown a tendency for increase; especially, it has been shown that whereas the number of casualties due to flood or drought decreases, property damage has been shown to increase. Despite the fact that the intensity of rainfall, temperature, and discharge amount are anticipated to rise, appropriate measures to address such vulnerabilities in water resources or management of drainage area of future water resources have not been implemented as yet. Moreover, it has been found that the research results on climate change that have been carried out by different bodies in Korea diverge significantly, which goes to show that many inherent uncertainties exist in the various stage of researches. Regarding the strategy in response to climate change, the voluntary response by an individual or a corporate entity has been found to be inadequate owing to the low level of awareness by the citizens and the weak social infrastructure for responding to climate change. Further, legal or systematic measures such as the governmental campaign on the awareness of climate change or the policy to offer incentives for voluntary reduction of greenhouse gas emissions have been found to be insufficient. Lastly, there has been no case of any research whatsoever on the anticipated effects on the economy brought about by climate change, however, there are a few cases of on-going researches. In order to establish the strategy to prepare for and respond to the anticipated lack of water resources resulting from climate change, there is no doubt that a standardized analysis on the effects on the economy should be carried out first and foremost.

Thermal Environments of Children's Parks during Heat Wave Period (폭염 시 어린이공원의 온열환경)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.6
    • /
    • pp.84-97
    • /
    • 2016
  • This study was to investigate the user's thermal environments of the children's parks according to pavements and sunscreen types during periods of heat waves. The measurements were conducted at the sand pits, rubber chip pavement, shelters, and green shade ground of the two children's parks located in Jinju, Korea(Chilam: $N\;35^{\circ}11^{\prime}1.4{^{\prime}^{\prim}}$, $E\;128^{\circ}5^{\prime}31.7{^{\prime}^{\prime}}$, elevation 38m, Gaho: $N\;35^{\circ}09^{\prime}56.8{^{\prime}^{\prime}}$, $E\;128^{\circ}6^{\prime}41.1{^{\prime}^{\prime}}$, elevation 24m) over three days during 11-13, August, 2016. The highest ambient air temperatures at the Jinju Meteorological Office during the three measurement days were $35.9{\sim}36.8^{\circ}C$, which corresponded with the extremely hot weather. A series of experiments measured air temperature, relative humidity, wind velocity, black globe temperature, and long-wave and short-wave radiation of the six directions 0.6 m above ground level. The wet bulb globe temperature(WBGT) and the universal thermal climatic index(UTCI) were used to evaluate thermal stress. Surface temperature images of the play equipment were also taken using infrared thermography. Surface temperatures of the play equipment and grounds were used to evaluate burn risk through contact with playground materials. The results showed the following. The maximum air temperatures averaged over 1-hour period for three days were $36.6{\sim}39.4^{\circ}C$. The sun shades reduced those temperatures by up to $2.8^{\circ}C$(green shade) and $1.0^{\circ}C/2.3^{\circ}C$(shelters). The minimum relative humidity values averaged over 1-hour period for three days were 44~50%. The sun shades increased those humidity values by up to 6%(green shade) and 4%/6%(shelters). The risk of heat related illness at the measurement sites of the children's parks were extreme and high in the daytime hours. The maximum WBGT values averaged over a 30-minute period for three days were $31.2{\sim}33.6^{\circ}C$. The sun shades reduced those WBGT values by up to $2.4^{\circ}C$(green shade) and $0.5^{\circ}C/2.1^{\circ}C$(shelters) compared to sandpits, but would not block the risk of heat related illness in the daytime hours. The category of heat stress at the measurement sites of the children's parks were extreme and very strong in the daytime hours. The maximum UTCI values averaged over a 30-minute period for three days were $39.9{\sim}48.1^{\circ}C$. The sun shades reduced those UTCI values by up to $7.8^{\circ}C$(green shade) and $4.1^{\circ}C/8.2^{\circ}C$(shelters) compared to sandpits, but could not lower heat stress category from extreme and very strong to strong and moderate in the daytime hours. According to the burn threshold criteria when skin was in contact with playground materials, the maximum surface temperature of the stainless steels($70.8^{\circ}C$) surpassed three seconds $60^{\circ}C$ threshold for uncoated steel, that of the rubber chip($76.5^{\circ}C$) surpassed five seconds $74^{\circ}C$ threshold for the plastic, that of the plastic slide($68.5^{\circ}C$) and seats($71.0^{\circ}C$) surpassed the one min $60^{\circ}C$ threshold for plastic, respectively. The surface temperatures of shaded play equipment were lower approximately $20^{\circ}C$ than those of play equipment exposed to the sun. Therefore, sun shades can block the risk of burns in daytime hours. Because of the extreme and high risk of heat related illness and extreme and high heat stress at the children's parks during periods of heat waves, parents and administrators must protect children from the use of playgrounds. The risk of burn when contact with play equipments and grounds at the children's parks during periods of heat waves, was very high. The sun shades are essential to block the risk of burn from play equipments and grounds at the children's parks during heat waves.

A Study on the Extinguishing Performance of Water Mist with Additives (첨가제가 혼합된 미세물분무의 소화성능에 관한 연구)

  • 이경덕;신창섭
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Halogen-based fire suppressing agents have environmental problems because they cause the stratospheric ozone depletion and globe warming. Hence, fire suppression system using fine water mist became the center of interest as a substitution of halon. As a study about this, it is in progress to make the optimum droplet size by using water mist nozzles and to improve the extinguishing performance of water mist by using additives. Before this study, the extinguishing time of ethanol and n-heptane pool fire was measured with changing of water mist droplet size, flow density, discharge pressure, and fire size. In this study, on adding the additives to improve physical and chemical extinguishing performance of water mist, the extinguishing performance would evaluate and the optimum condition would find out. As a result, in case of ethanol pan 1 pool fire, the extinguishing time of the water mist by adding of 2.5 wt% NaCl and 0.3% AFFF got shorter 27% and 60% than the pure water mist. Adding of AFFF was to decrease the flame temperature by forming thin film on the fuel surface and to decrease the evaporation of n-heptane fuel. In case of NaCl, alkali salt crystals showed on the flame surface.

Characteristics of Greenhouse Gas Emissions from Freshwater Wetland and Tidal Flat in Korea (내륙습지와 갯벌에서의 주요 온실기체 배출량 특성연구)

  • Kim, Deug-Soo;Na, Un-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.2
    • /
    • pp.171-185
    • /
    • 2013
  • Wetland has been known as a major biogenic source of $CH_4$ in globe. In a global scale, the amounts of 55~150 Tg $CH_4$ are released into the atmosphere annually from wetlands; and it accounts for about 21% of total $CH_4$ annual global emission. From August 2010 to August 2011, measurements of major greenhouse gas ($CO_2$, $CH_4$, $N_2O$) emissions were conducted from a freshwater wetland at Kunsan ($35^{\circ}56^{\prime}38.94^{\prime\prime}N$, $126^{\circ}43^{\prime}16.62^{\prime\prime}E$), Korea by using floating closed static chamber method. Flux measurements for these gases from western coastal tidal flat at Seocheon ($36^{\circ}07^{\prime}13.85^{\prime\prime}N$, $126^{\circ}35^{\prime}43.18^{\prime\prime}E$), Korea were managed from July 2011 to February 2012 by using closed static chamber method. The average gas fluxes and ranges from freshwater wetland experiment were $0.155{\pm}0.29\;mg\;m^{-2}\;hr^{-1}$ (-0.054~0.942 $mg\;m^{-2}\;hr^{-1}$) for $CH_4$, $17.30{\pm}73.27\;mg\;m^{-2}\;hr^{-1}$ (-52.44~261.66 $mg\;m^{-2}\;hr^{-1}$) for $CO_2$, and $0.004{\pm}0.01\;mg\;m^{-2}\;hr^{-1}$ (-0.02~0.07 $mg\;m^{-2}\;hr^{-1}$) for $N_2O$, respectively. Monthly base flux measurement results revealed that $CH_4$ fluxes during summer months in high water temperature were significantly high, and at least order of one higher than those during other months. The average fluxes and ranges of these greenhouse gases from tidal flat during the experimental period were $0.002{\pm}0.08\;mg\;m^{-2}\;hr^{-1}$ (-0.16~0.22 $mg\;m^{-2}\;hr^{-1}$) for $CH_4$, $-31.18{\pm}75.33\;mg\;m^{-2}\;hr^{-1}$ (-298.87~101.93 $mg\;m^{-2}\;hr^{-1}$) for $CO_2$, and $0.001{\pm}0.01\;mg\;m^{-2}\;hr^{-1}$ (-0.017~0.03 $mg\;m^{-2}\;hr^{-1}$) for $N_2O$, respectively. Comparing the results of gas emissions from tidal flat to those from freshwater wetland, we found significantly lower emissions from tidal flat based on the experiment. Physicochemical parameters of water and soil at these experimental plots were also sampled and analyzed for understanding their correlation with these gas emissions.

Effectiveness of the Aluminum Thermal Screens Depending on the Allocation Type (알루미늄반사재의 배치형태에 따른 보온 효과)

  • Kim, Young-Bok;Park, Joong-Choon;Huh, Moo-Ryong;Lee, Si-Young;Jeong, Sung-Woo
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.284-290
    • /
    • 2007
  • Thermal insulation effectiveness of the aluminum insulator depending on the direction of its glossing face, number of layer and allocation position was investigated. Modules were assembled by the combination of the variables levels and experimented for the case of 100 W and 40 W heating in the modules. The temperatures in the modules with the aluminum insulator were higher than those of the modules with polyester curtains. For the modules with one layer aluminum insulator, the inside temperatures of the modules with the direction of the glossing face outward were higher than those of the modules of inward. For two layer of aluminum insulator, the directions of those glossing faces were recommended to be the same direction for higher thermal insulation effectiveness. For the modules without heating, the temperature difference between the modules were not significant. The black globe temperatures in the modules were changed with the similar tendencies with the dry bulb temperatures in the modules. Those of the black globes were higher than those of the dry bulb temperatures as a whole. It was more distinguished for the modules of inward direction.

On the Diurnal Variation of Cloudiness over the Weatern Pacific by Using GMS-IR Data (GMS-IR 자료를 이용한 서태평양에서의 운량 일변동에 관한 연구)

  • 김영섭;한경수
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • The western equatorial Pacific Ocean, where sea surface temperature is the warmest on the globe, is characterized by numerous convective systems and large annual precipitation. In this region, the cloudiness data with tops higher than 8km level obtained from the GMS-IR data are used to investigate the diurnal variation of cloudiness. The amplitude and phase of diurnal and semi-diurnal cycles are mainly investigated to examine details on the temporal and spatial structure of clouds. Cloudiness variation has typical cycles and each cycle is associated with the air-sea interactive phenomena. Spectral analysis on the cloudiness time series data indicates that 30-60 day, 17-20day, 7-8 day, diurnal and semi diurnal cycle are peaked. During Northern Winter and Southern Summer, the large cloudiness exsists over New Guinea, the adjacent seas of North Australia, and the open oceanic regions east of $160^{\circ}$E. Cloudiness diurnal variability over the lands and their adjacent seas is about 2.0 times larger than that over the open sea regions. That may be due to the difference of specific heat between the land and sea. The maximum and minimum cloudiness appeared at 18:00 and 09:00 hours over the land, and at noon and 21:00 hours over the sea, respectively. The amplitude of diurnal component over the land is 4,7 times larger than that of semi-diurnal component, and 1.5 times over the sea.

The Influence of the Landscaping Shade Materials' Porosity on the Mean Radiant Temperature(MRT) of Summer Outdoors (조경용 차양 재료의 공극률이 하절기 옥외공간 평균복사온도에 미치는 영향)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.2
    • /
    • pp.60-67
    • /
    • 2017
  • The purpose of this study was to evaluate the influence of landscaping shade materials' porosity on the Mean Radiant Temperature (MRT) of summer outdoors. The MRTs were measured under seven different types of black membranes with holes of 8mm diameter at different intervals applied on the top of wooden boxes, and compared with those of four additional control plots with or without shade and lateral boxes. The applied porosities were 0.5, 1, 2, 4, 8, 16%, and 32%, and three groups of three shades were compared sequentially from August 13 to September 8, 2016. The MRTs under the shade without lateral block, no shade with lateral block, and shade with lateral block were $33.08^{\circ}C$, $45.80^{\circ}C$, and $42.3^{\circ}C$, respectively, while that of no-shaded no-lateral screen was $44.26^{\circ}C$, based on records from 11:00 AM to 3:00 PM on the days with a peak globe temperature higher than $30^{\circ}C$. An ANCOVA analysis showed that the MRTs under the shades with 0.5, 1, 2, 4, 8, 16%, and 32% porosities were calculated as 43.40, 43.10, 41.49, 40.43, 39.61, $37.91^{\circ}C$, and $38.12^{\circ}C$, respectively, while that in the no shaded control box was $45.8^{\circ}C$. The curve fitted between MRTs and the porosity showed a U-shaped quadratic function with the minimum MRT at 16% practically or 22.5% statistically.

Seasonal and Inter-annual Variations of Sea Ice Distribution in the Arctic Using AMSR-E Data: July 2002 to May 2009 (AMSR-E 위성 데이터를 이용한 북극해빙분포의 계절 변동 및 연 변동 조사: 2002년 7월 ~ 2009년 5월)

  • Yang, Chan-Su;Na, Jae-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.423-434
    • /
    • 2009
  • The Arctic environment is sensitive to change of sea-ice distribution. The increase and decrease of sea ice work to an index of globe warming progress. In order to predict the progress of hereafter earth global warming, continuous monitoring regarding a change of the sea ice area in the Arctic should be performed. The remote sensing based on an artificial satellite is most effective on the North Pole. The sea ice observation using a passive microwave sensor has been continued from 1970's. The determination of sea ice extent and ice type is one of the great successes of the passive microwave imagers. In this paper, to investigate the seasonal and inter-annual variation of sea-ice distribution we used here the sea ice data from July 2002 to May 2009 around the Arctic within $60^{\circ}N$ for the AMSR-E 12.5km sea-ice concentration, a passive microwave sensor. From an early analysis of these data, the arctic sea-ice extent has been steadily decreasing at a rate of about 3.1%, accounting for about $2{\times}10^5\;km^2$, which was calculated for the sea-ice cover reaching its minimum extent at the end of each summer. It is also revealed that this trend corresponds to a decline in the multi-year ice that is affected mainly by summer sea surface and air temperature increases. The extent of younger and thinner (first-year) ice decreased to the 2007 minimum, but rapidly recovered in 2008 and 2009 due to the dramatic loss in 2007. Seasonal variations of the sea-ice extent show significant year-to-year variation in the seasons of January-March in the Barents and Labrador seas and August-October in the region from the East Siberian and Chukchi seas to the North Pole. The spatial distribution of multi-year ice (7-year old) indicates that the perennial ice fraction has rapidly shrunk recently out of the East Siberian, Laptev, and Kara seas to the high region of the Arctic within the last seven years and the Northeast Passage could become open year-round in near future.