• Title/Summary/Keyword: Global environmental change

Search Result 886, Processing Time 0.023 seconds

CONSTRUCTING DAILY 8KM NDVI DATASET FROM 1982 TO 2000 OVER EURASIA

  • Suzuki Rikie;Kondoh Akihiko
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.18-21
    • /
    • 2005
  • The impact of the interannual climatic variability on the vegetation sensitively appears in the timing of phenological events such as green-up, mature, and senescence. Therefore, an accurate and temporally high-resolution NDVI dataset will be required for analysis on the interannual variability of the climate-vegetation relationship. We constructed a daily 8km NDVI dataset over Eurasia based on the 8km tiled data of Pathfinder A VHRR Land (PAL) Global daily product. Cloud contamination was successfully reduced by Temporal Window Operation (TWO), which is a method to find optimized upper envelop line of the NDVI seasonal change. Based on the daily NDVI time series from 1982 to 2000, an accurate (daily) interannual change of the phenological events will be analyzed.

  • PDF

Influences of Global Warming and Succession Possibility through Vertical Distribution of Communities in Ecotone, Wolchulsan National Park (월출산 국립공원 추이대 군락의 수직적 분포를 통해 본 지구 온난화의 영향과 금후의 천이 가능성)

  • Lee, Sung-Je;Ahn, Young-Hee
    • Journal of Environmental Science International
    • /
    • v.20 no.12
    • /
    • pp.1561-1584
    • /
    • 2011
  • This study aims at classifying and interpreting on the vegetation structure and analyzing the correlationship between communities and environmental conditions in Mt. Wolchulsan. We also predicted the succession possibility and the vertical distribution change of vegetations according to the global warming, through the pioneer species of a forest change and dominant species of canopy vegetations. We also analyzed the Raunkiaer's life-form. The communities in this ecotone are distributed vertically in the order of a Quercus acuta community, a Q. serrata-Q. variabilis community and a Q. serrata community. A Pinus densiflora community appears on the most of altitudes. The distribution of communities correlates highly with an altitude. The Q. serrata-Q. variabilis community will be succession to the Q. acuta community, and the Q. variabilis will be under natural selection gradually or remain locally. The Q. serrata community will possibly maintain as it is, and the P. densiflora community will be also under natural selection gradually. The valuable quantitative and numerical life-forms are confirmed and the layer structure of present vegetation will not be changed.

Future Change Using the CMIP5 MME and Best Models: I. Near and Long Term Future Change of Temperature and Precipitation over East Asia (CMIP5 MME와 Best 모델의 비교를 통해 살펴본 미래전망: I. 동아시아 기온과 강수의 단기 및 장기 미래전망)

  • Moon, Hyejin;Kim, Byeong-Hee;Oh, Hyoeun;Lee, June-Yi;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.403-417
    • /
    • 2014
  • Future changes in seasonal mean temperature and precipitation over East Asia under anthropogenic global warming are investigated by comparing the historical run for 1979~2005 and the Representative Concentration Pathway (RCP) 4.5 run for 2006~2100 with 20 coupled models which participated in the phase five of Coupled Model Inter-comparison Project (CMIP5). Although an increase in future temperature over the East Asian monsoon region has been commonly accepted, the prediction of future precipitation under global warming still has considerable uncertainties with a large inter-model spread. Thus, we select best five models, based on the evaluation of models' performance in present climate for boreal summer and winter seasons, to reduce uncertainties in future projection. Overall, the CMIP5 models better simulate climatological temperature and precipitation over East Asia than the phase 3 of CMIP and the five best models' multi-model ensemble (B5MME) has better performance than all 20 models' multi-model ensemble (MME). Under anthropogenic global warming, significant increases are expected in both temperature and land-ocean thermal contrast over the entire East Asia region during both seasons for near and long term future. The contrast of future precipitation in winter between land and ocean will decrease over East Asia whereas that in summer particularly over the Korean Peninsula, associated with the Changma, will increase. Taking into account model validation and uncertainty estimation, this study has made an effort on providing a more reliable range of future change for temperature and precipitation particularly over the Korean Peninsula than previous studies.

Analysis of Changes in Extreme Weather Events Using Extreme Indices

  • Kim, Byung-Sik;Yoon, Young-Han;Lee, Hyun-Dong
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.175-183
    • /
    • 2011
  • The climate of the $21^{st}$ century is likely to be significantly different from that of the 20th century because of human-induced climate change. An extreme weather event is defined as a climate phenomenon that has not been observed for the past 30 years and that may have occurred by climate change and climate variability. The abnormal climate change can induce natural disasters such as floods, droughts, typhoons, heavy snow, etc. How will the frequency and intensity of extreme weather events be affected by the global warming change in the $21^{st}$ century? This could be a quite interesting matter of concern to the hydrologists who will forecast the extreme weather events for preventing future natural disasters. In this study, we establish the extreme indices and analyze the trend of extreme weather events using extreme indices estimated from the observed data of 66 stations controlled by the Korea Meteorological Administration (KMA) in Korea. These analyses showed that spatially coherent and statistically significant changes in the extreme events of temperature and rainfall have occurred. Under the global climate change, Korea, unlike in the past, is now being affected by extreme weather events such as heavy rain and abnormal temperatures in addition to changes in climate phenomena.

A Review of Observed Climate Change in Korean Peninsula (한반도 지역 관측 기후변화 고찰)

  • Ho, Chang-Hoi;Lee, Min-Hee;Park, Tae-Won;Lee, Seungmin
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.221-235
    • /
    • 2011
  • This study summarizes previous studies on the climate change over Korea. Several studies on climate change in the neighboring countries as well as the entire globe are reviewed. Temperature data obtained from modern observational system show an increasing trend beyond the natural variations. The increasing rate of sea surface temperature (SST) over the ocean basins surrounding Korea is higher than that of the global-mean SST. The large increase in the SST over the oceans surrounding Korea may enhance tropical cyclone activity and heavy rainfall frequency in Korea. In addition, it has been reported that the changes in large scale circulation associated with global climate change influence the spatio-temporal variation of monsoon including Changma in summer and cold surges in winter. Although all researches on the subject were not fully discussed in this study due to short period of preparation, allowed pages, and authors' limited knowledge, we expect that this summarized reviews would be helpful to understand climate changes over Korea and the surrounding regions.

Future Directions and Perspectives on Soil Environmental Researches (토양환경분야 연구동향 및 전망)

  • Yang, Jae-E.;Ok, Yong-Sik;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1286-1294
    • /
    • 2011
  • This paper reviews the future directions and perspectives on the soil environmental researches in the 21 century. Previously, the principal emphasis of soil environmental researches had put on the enhancement of food and fiber productions. Beside the basic function of soil, however, the societal needs on soil resources in the 21st century have demands for several environmental and social challenges, occurring regionally or globally. Typical global issues with which soil science should deal include food security with increasing agronomic production to meet the exploding world population growth, adaptation and mitigation of climate change, increase of the carbon sequestration, supply of the biomass and bioenergy, securing the water resource and quality, protection of environmental pollution, enhancing the biodiversity and ecosystem health, and developing the sustainable farming/cropping system that improve the use efficiency of water and agricultural resources. These challenges can be solved through the sustainable crop production intensification (SCPI) or plant welfare concept in which soil plays a key role in solving the abovementioned global issues. Through implementation of either concept, soil science can fulfill the goal of the modern agriculture which is the sustainable production of crops while maintaining or enhancing the ecosystem function, quality and health. Therefore, directions of the future soil environmental researches should lie on valuing soil as an ecosystem services, translating research across both temporal and spatial scales, sharing and using data already available for other purposes, incorporating existing and new technologies from other disciplines, collaborating across discipline, and translating soil research into information for stakeholders and end users. Through the outcomes of these approaches, soil can enhance the productivity from the same confined land, increase profitability, conserve natural resource, reduce the negative impact on environment, enhance human nutrition and health, and enhance natural capital and the flow of ecosystem services. Soil is the central dogma, final frontier and new engine for the era of sustainability development in the $21^{st}$ century and thus soil environmental researches should be carried according to this main theme.

Global Carbon Cycle Under the IPCC Emissions Scenarios (IPCC 배출시나리오에 따른 지구 규모의 탄소 이동 연구)

  • Kwon, O-Yul
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.287-297
    • /
    • 2007
  • Increasing carbon dioxide emissions from fossil fuel use and land-use change has been perturbing the balanced global carbon cycle and changing the carbon distribution among the atmosphere, the terrestrial biosphere, the soil, and the ocean. SGCM(Simple Global Carbon Model) was used to simulate global carbon cycle for the IPCC emissions scenarios, which was six future carbon dioxide emissions from fossil fuel use and land-use change set by IPCC(Intergovernmental Panel on Climate Change). Atmospheric $CO_2$ concentrations for four scenarios were simulated to continuously increase to $600{\sim}1050ppm$ by the year 2100, while those for the other two scenarios to stabilize at $400{\sim}600ppm$. The characteristics of these two $CO_2$-stabilized scenarios are to suppress emissions below $12{\sim}13$ Gt C/yr by tile year 2050 and then to decrease emissions up to 5 Gt C/yr by the year 2100, which is lower than the current emissions of $6.3{\pm}0.4$ Gt C/yr. The amount of carbon in the atmosphere was simulated to continuously increase for four scenarios, while to increase by the year $2050{\sim}2070$ and then decrease by the year 2100 for the other two scenarios which were $CO_2$-stabilized scenarios. Even though the six emission scenarios showed different simulation results, overall patterns were such similar that the amount of carbon was in the terrestrial biosphere to decrease first several decades and then increase, while in the soil and the ocean to continuously increase. The ratio of carbon partitioning to tile atmosphere for the accumulated total emissions was higher for tile emission scenario having higher atmospheric $CO_2$, however that was decreasing as time elapsed. The terrestrial biosphere and the soil showed reverse pattern to the atmosphere.

Anomalous Variation of the Oceanic Features around Korean Waters Related to the Global Change (지구환경 변화와 관련된 한국 연근해 해양 이상변동)

  • 서영상;장이현;황재동
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.257-263
    • /
    • 2003
  • Oceanographic features around Korean waters related to the global change were studied by analysis of the longterm variation of water temperature, dissolved oxygen, sea level of the surface layer with 1$^{\circ}C$ temperature, spatial position of the subpolar front in the East Sea/Japan Sea (the East sea hereafter) and the Wolf Sunspot Number. With the global warming, the temperature of Korean waters has been increased 0.5∼1.0$^{\circ}C$ for 33years (1968∼2000). In case of the dissolved oxygen in the East Sea has been decreased 0.46$m\ell$/$\ell$. Year to year vertical fluctuations of the monthly anomalies of the surface layer with 1$^{\circ}C$water in the East Sea have predominant periods with 15years as the longterm variation of Arctic climate, 12 and 18years as the El Nino-Southern Oscillation. Spatial position of the subpolar front in the East Sea moved to northern part of the sea from the southern part of the sea with the increasing sea surface temperature. The relationship between the number of Wolf Sunspot and the anomalies of sea surface temperature was very closer after the late of 1980s than those before the early of 1980s in Korean waters.

An Analysis of the Effect of Climate Change on Nakdong River Environmental Flow (낙동강 유역 환경유량에 대한 기후변화의 영향 분석)

  • Lee, A Yeon;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.273-285
    • /
    • 2011
  • This study describes the modeling of climate change impact on runoff across southeast Korea using a conceptual rainfall-runoff model TANK and assesses the results using the concept of environmental flows developed by International Water Management Institute. The future climate time series is obtained by scaling the historical series, informed by 4 global climate models and 3 greenhouse gas emission scenarios, to reflect a $4.0^{\circ}C$ increase at most in average surface air temperature and 31.7% increase at most in annual precipitation, using the spatio-temporal changing factor method that considers changes in the future mean seasonal rainfall and potential evapotranspiration as well as in the daily rainfall distribution. Although the simulation results from different global circulation models and greenhouse emission scenarios indicate different responses in flows to the climate change, the majority of the modeling results show that there will be more runoff in southeast Korea in the future. However, there is substantial uncertainty, with the results ranging from a 5.82% decrease to a 48.15% increase in the mean annual runoff averaged across the study area according to the corresponding climate change scenarios. We then assess the hydrologic perturbations based on the comparison between present and future flow duration curves suggested by IMWI. As a result, the effect of hydrologic perturbation on aquatic ecosystems may be significant at several locations of the Nakdong river main stream in dry season.