• 제목/요약/키워드: Global earth observation

검색결과 120건 처리시간 0.03초

Remote Sensing and GIS for Earth & Environmental Disasters: The Current and Future in Monitoring, Assessment, and Management 2 (원격탐사와 GIS를 이용한 지구환경재해 관측과 관리 기술 현황 2)

  • Yang, Minjune;Kim, Jae-Jin;Ryu, Jong-Sik;Han, Kyung-soo;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • 제38권5_3호
    • /
    • pp.811-818
    • /
    • 2022
  • Recently, the number of natural and environmental disasters is rapidly increasing due to extreme weather caused by climate change, and the scale of economic losses and damage to human life is increasing accordingly. In addition, with urbanization and industrialization, the characteristics and scale of extreme weather appearance are becoming more complex and large in different ways from the past, and need for remote sensing and artificial intelligence technology for responding and managing global environmental disasters. This special issue investigates environmental disaster observation and management research using remote sensing and artificial intelligence technology, and introduces the results of disaster-related studies such as drought, flood, air pollution, and marine pollution, etc. in South Korea performed by the i-SEED (School of Integrated Science for Sustainable Earth and Environmental Disaster at Pukyong National University). In this special issue, we expect that the results can contribute to the development of monitoring and management technologies that may prevent environmental disasters and reduce damage in advance.

A Study on the Decision for External Water Level of a River Considering Sea Level Rise (해수면 상승을 고려한 하천 외수위 결정에 관한 연구)

  • Choo, Tai Ho;Yun, Gwan Seon;Kwon, Yong Been;Ahn, Si Hyung;Kim, Jong Gu
    • The Journal of the Korea Contents Association
    • /
    • 제16권4호
    • /
    • pp.604-613
    • /
    • 2016
  • The sea level of the Earth is rising approximately 2.0mm per year (global average value) due to thermal expansion of sea water, melting of glaciers and other causes by global warming. However, when it comes to design a river, the standard of design water level is decided by analyzing four largeness tide value and harmonic constant with observed tidal water level. Therefore, it seems the external water level needs to consider an increasing speed of the seawater level which corresponds to a design frequency. In the present study, the hourly observed tidal water level targeting 47 tidal stations operated by Korea Hydrographic and Oceanographic Administration (KHOA) from beginning of observation to 2015 per hour has been collected. The variation of monthly and yearly and increasing ratio have been performed divided 4 seas such as the Southern, East, Western, and Jeju Sea. Also, the external water level existing design for rivers nearby a coast was been reviewed. The current study could be used to figure out the cause of local seawater rise and reflect the external water level as basic data.

Prediction Skill of East Asian Precipitation and Temperature Associated with El Niño in GloSea5 Hindcast Data (GloSea5의 과거기후 모의자료에서 나타난 El Niño와 관련된 동아시아 강수 및 기온 예측성능)

  • Lim, So-Min;Hyun, Yu-Kyung;Kang, Hyun-Suk;Yeh, Sang-Wook
    • Atmosphere
    • /
    • 제28권1호
    • /
    • pp.37-51
    • /
    • 2018
  • In this study, we investigate the performance of Global Seasonal Forecasting System version 5 (GloSea5) in Korea Meteorological Administration on the relationship between El $Ni{\tilde{n}}o$ and East Asian climate for the period of 1991~2010. It is found that the GloSea5 has a great prediction skill of El $Ni{\tilde{n}}o$ whose anomaly correlation coefficients of $Ni{\tilde{n}}o$ indices are over 0.96 during winter. The eastern Pacific (EP) El $Ni{\tilde{n}}o$ and the central Pacific (CP) El $Ni{\tilde{n}}o$ are considered and we analyze for EP El $Ni{\tilde{n}}o$, which is well simulated in GloSea5. The analysis period is divided into the developing phase of El $Ni{\tilde{n}}o$ summer (JJA(0)), mature phase of El $Ni{\tilde{n}}o$ winter (D(0)JF(1)), and decaying phase of El $Ni{\tilde{n}}o$ summer (JJA(1)). The GloSea5 simulates the relationship between precipitation and temperature in East Asia and the prediction skill for the East Asian precipitation and temperature varies depending on the El $Ni{\tilde{n}}o$ phase. While the precipitation and temperature are simulated well over the equatorial western Pacific region, there are biases in mid-latitude region during the JJA(0) and JJA(1). Because the low level pressure, wind, and vertical stream function are simulated weakly toward mid-latitude region, though they are similar with observation in low-latitude region. During the D(0)JF(1), the precipitation and temperature patterns analogize with observation in most regions, but there is temperature bias in inland over East Asia. The reason is that the GloSea5 poorly predicts the weakening of Siberian high, even though the shift of Aleutian low is predicted. Overall, the predictability of precipitation and temperature related to El $Ni{\tilde{n}}o$ in the GloSea5 is considered to be better in D(0)JF(1) than JJA(0) and JJA(1) and better in ocean than in inland region.

Development of Inquiry Activity Materials for Visualizing Typhoon Track using GK-2A Satellite Images (천리안 위성 2A호 영상을 활용한 태풍 경로 시각화 탐구활동 수업자료 개발)

  • Chae-Young Lim;Kyung-Ae Park
    • Journal of the Korean earth science society
    • /
    • 제45권1호
    • /
    • pp.48-71
    • /
    • 2024
  • Typhoons are representative oceanic and atmospheric phenomena that cause interactions within the Earth's system with diverse influences. In recent decades, the typhoons have tended to strengthen due to rapidly changing climate. The 2022 revised science curriculum emphasizes the importance of teaching-learning activities using advanced science and technology to cultivate digital literacy as a citizen of the future society. Therefore, it is necessary to solve the temporal and spatial limitations of textbook illustrations and to develop effective instructional materials using global-scale big data covered in the field of earth science. In this study, according to the procedure of the PDIE (Preparation, Development, Implementation, Evaluation) model, the inquiry activity data was developed to visualize the track of the typhoon using the image data of GK-2A. In the preparatory stage, the 2015 and 2022 revised curriculum and the contents of the inquiry activities of the current textbooks were analyzed. In the development stage, inquiry activities were organized into a series of processes that can collect, process, visualize, and analyze observational data, and a GUI (Graphic User Interface)-based visualization program that can derive results with a simple operation was created. In the implementation and evaluation stage, classes were conducted with students, and classes using code and GUI programs were conducted respectively to compare the characteristics of each activity and confirm its applicability in the school field. The class materials presented in this study enable exploratory activities using actual observation data without professional programming knowledge which is expected to contribute to students' understanding and digital literacy in the field of earth science.

Study on the Variation Characteristic of the Photo-Volatic Power Generation due to Regional Meteorological Elements (국지 기상 요소에 의한 태양광 발전량 변동특성에 관한 연구)

  • Lee, Soon-Hwan;Kim, Hae-Dong;Cho, Chang-Bum
    • Journal of Environmental Science International
    • /
    • 제23권11호
    • /
    • pp.1943-1951
    • /
    • 2014
  • In order to clarify the characteristics of Photo-Volatic(PV) power generation over the Korean peninsula with complex terrain, special meteorological observation campaign was carried out for one year from 25 May 2011. Analysis is based on the comparison between observed meteorological elements and PV values generated at rated capacity 200 kW power plants. Solar radiation observed at $15^{\circ}$ inclined surface is 11 % larger than that observed at horizontal surface due to low elevation angel of the sun during winter season. The PV power generation tend to be more similar the variation of inclined surface irradiance than horizontal surface irradiance. Increasing air temperature often induce disturbance of the PV power generation. However, the higher the air temperature in winter season, the higher PV power generation because the PV module may be more activated at higher air temperature. PV generating efficiency tends to be conversed the value of 15%.

Pecipitable Water Vapor Change Obtained From GPS Data

  • Kingpaiboon, Sununtha;Satomura, Mikio;Horikawa, Mayumi;Nakaegawa, Tosiyuki;Shimada, Seiichi
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.384-386
    • /
    • 2003
  • GPS observation has been performed at Khon Kaen in northeast Thailand to investigate the Precipitable Water Vapor (PWV) change since August 2001 by using a Trimble 4000SSi receiver. The data obtained in the period from March to June in 2002 were processed by using CAMIT software to obtain the Zenith Tropospheric Delay (ZTD) at every one hour referring to some IGS stations around Thailand. We estimated the Zenith Hydrostatic Delay (ZHD) at every three hours with barometer data at Khon Kaen of Thai Meteorological Department, The Zenith Wet Delay (ZWD) was obtained by subtracting ZHD from ZTD and PWV can be calculated from ZTD. The results obtained shows that PWV changes with a large amplitude in March and April before the monsoon onset, and also we can see steep PWV increases before rain and decreases after rain. In May and June after the onset, the PWV is almost constant to be 60 to 70 mm, but there is a semi-diurnal change which has high PWV values at about 8 and 20 o'clock in local time.

  • PDF

Accuracy Analysis of GNSS-derived Orthometric Heights on the Leveling Loop Disconnected Area

  • Jung, Sung Chae;Kwon, Jay Hyoun;Lee, Jisun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제36권1호
    • /
    • pp.1-8
    • /
    • 2018
  • To compensate for the shortcomings of spirit leveling, research on the determination of GNSS (Global Navigation Satellite System)-derived orthometric height has been actively carried out. However, most analyses were primarily performed inland. In this study, the influences of the arrangement of control points, observation duration, and geoid model on the accuracy of the GNSS-derived orthometric height have been analyzed to suggest the proper method to apply the determination of GNSS-derived orthometric height to the leveling loop disconnected area. As a result, it was found that two known points located near the unknown points need to be fixed in the leveling loop disconnected area. Further, 3 cm level of accuracy can be achieved if the GNSS survey is performed over two days, for four hours per day. In terms of the geoid model, the latest national geoid model should be applied rather than the EGM08 (Earth Gravitational Model 2008) to minimize regional bias and increase accuracy. Future research is necessary to apply the determination of the GNSS-derived orthometric height technique as a method to connect with the islands because the vertical reference system used inland and that used for the islands in Korea are still different.

Micro-meteorological Characteristics during the Steam Fog over the Gumi Reservoir of Nakdong River (낙동강 구미 보의 증기 안개 발생 시의 미기상학적 특성)

  • Kim, Hae-Dong;Cho, Chang-Bum;Seo, Kwang-Su
    • Journal of Environmental Science International
    • /
    • 제25권3호
    • /
    • pp.405-415
    • /
    • 2016
  • We analyzed the micro-meteorological characteristics during typical steam fog over the Gumi Reservoir of Nakdong river with the field observation data for recent 2 year(1 April 2013~31 March 2015) collected by the national institute of meteorological research, KMA. Steam fog occur when the cold drainage flows over the warm water surface. As the sensible and latent heat from water are provided to the air, the instability of lower atmosphere is increased. The resultant vertical mixing of warm, moist air near water surface and cold air aloft causes the formation of status cloud. The convection strengthened by radiative cooling of the upper part of the stratus causes the fog to propagate downward. Also, the temperature at the lowest atmosphere is increased rapidly and the inversion near surface disappear by these processes when the fog forms. The increase of wind speed is observed because the downward transportation of momentum is caused by vertical mixing.

On the Steam Fog in the Gumi Reservoir of Nakdong River (낙동강 구미 보의 증기 안개에 관한 연구)

  • Kim, Hae-Dong;Cho, Chang-Bum;Seo, Kwang-Su
    • Journal of Environmental Science International
    • /
    • 제25권1호
    • /
    • pp.163-171
    • /
    • 2016
  • We analyzed the characteristics of fog formation in the Gumi Reservoir of Nakdong river with the field observation data for recent 2 years (1 April 2013~31 March 2015) collected by the national institute of meteorological research, KMA. In early morning, we frequently observe the steam rising from the water surface. The fog occurs from adding water vapor into the air. We call the fog as steam fog. Steam fogs occur when cold, dry air mixes with warm, moist air above a water surface. The steam fog appears mainly in autumn under the following conditions; (1) sensible heat is positive values ($10{\sim}20W/m^2$), (2) latent heat is more positive values ($25{\sim}35W/m^2$) than sensible heat, (3) cloudless nights with light winds (about 1.5 m/s), (4) under condition(3), mountainous winds easily blows into the reservoir.

Solar Wind Observations Using STELab-IPS Array In Japan

  • Fujiki, Ken'ichi;Tokumaru, Munetoshi;Iju, Tomoya;Hirota, Maria;Noda, Momotaro;Kojima, Masayoshi
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제36권2호
    • /
    • pp.93.1-93.1
    • /
    • 2011
  • Radio wave from a compact radio source such as a quasar are scattered by irregularities of electron density. The scattered waves interfere with each other as they propagate to the Earth producing diffraction patterns on the ground. This phenomenon is called interplanetary scintillation (IPS). The IPS pattern contains the information of solar wind velocities and density fluctuations passing across a line-of-sight (LOS) from an observer to a radio source. The IPS is a useful tool which allows us to measure the solar wind in three dimensional space inaccessible to in situ observations. Although the IPS measurement is an integral of solar wind velocities and density fluctuations along the LOS, which causes degradation of accuracy, we have succeeded to develop computer assisted tomography (CAT) analysis to remove the effect of LOS integration. These techniques greatly improved the accuracy of determinations of solar wind velocity structures. In this talk we present our IPS observation system and long-term variation of global solar wind structures from 1980-2009, then we focus on recent peculiar solar wind properties.

  • PDF