• Title/Summary/Keyword: Global climate change

검색결과 1,380건 처리시간 0.034초

Trend Analysis of Projected Climate Data based on CMIP5 GCMs for Climate Change Impact Assessment on Agricultural Water Resources (농업수자원 기후변화 영향평가를 위한 CMIP5 GCMs의 기후 전망자료 경향성 분석)

  • Yoo, Seung-Hwan;Kim, Taegon;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제57권5호
    • /
    • pp.69-80
    • /
    • 2015
  • The majority of projections of future climate come from Global Circulation Models (GCMs), which vary in the way they were modeled the climate system, and so it produces different projections about conceptualizing of the weather system. To implement climate change impact assessment, it is necessary to analyze trends of various GCMs and select appropriate GCM. In this study, climate data in 25 GCMs 41 outputs provided by Coupled Model Intercomparison Project Phase 5 (CMIP5) was downscaled at eight stations. From preliminary analysis of variations in projected temperature, precipitation and evapotranspiration, five GCM outputs were identified as candidates for the climate change impact analysis as they cover wide ranges of the variations. Also, GCM outputs are compared with trends of HadGCM3-RA, which are established by the Korean Meteorological Administration. From the results, it can contribute to select appropriate GCMs and to obtain reasonable results for the assessment of climate change.

Predicting the Potential Distribution of an Invasive Species, Solenopsis invicta Buren (Hymenoptera: Formicidae), under Climate Change using Species Distribution Models

  • SUNG, Sunyong;KWON, Yong-Su;LEE, Dong Kun;CHO, Youngho
    • Entomological Research
    • /
    • 제48권6호
    • /
    • pp.505-513
    • /
    • 2018
  • The red imported fire ant is considered one of the most notorious invasive species because of its adverse impact on both humans and ecosystems. Public concern regarding red imported fire ants has been increasing, as they have been found seven times in South Korea. Even if red imported fire ants are not yet colonized in South Korea, a proper quarantine plan is necessary to prevent their widespread distribution. As a basis for quarantine planning, we modeled the potential distribution of the red imported fire ant under current climate conditions using six different species distribution models (SDMs) and then selected the random forest (RF) model for modeling the potential distribution under climate change. We acquired occurrence data from the Global Biodiversity Information Facility (GBIF) and bioclimatic data from WorldClim. We modeled at the global scale to project the potential distribution under the current climate and then applied models at the local scale to project the potential distribution of the red imported fire ant under climate change. Modeled results successfully represent the current distribution of red imported fire ants. The potential distribution area for red imported fire ants increased to include major harbors and airports in South Korea under the climate change scenario (RCP 8.5). Thus, we are able to provide a potential distribution of red imported fire ant that is necessary to establish a proper quarantine plan for their management to minimize adverse impacts of climate change.

An Analysis of the Effect of Climate Change on Nakdong River Environmental Flow (낙동강 유역 환경유량에 대한 기후변화의 영향 분석)

  • Lee, A Yeon;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • 제27권3호
    • /
    • pp.273-285
    • /
    • 2011
  • This study describes the modeling of climate change impact on runoff across southeast Korea using a conceptual rainfall-runoff model TANK and assesses the results using the concept of environmental flows developed by International Water Management Institute. The future climate time series is obtained by scaling the historical series, informed by 4 global climate models and 3 greenhouse gas emission scenarios, to reflect a $4.0^{\circ}C$ increase at most in average surface air temperature and 31.7% increase at most in annual precipitation, using the spatio-temporal changing factor method that considers changes in the future mean seasonal rainfall and potential evapotranspiration as well as in the daily rainfall distribution. Although the simulation results from different global circulation models and greenhouse emission scenarios indicate different responses in flows to the climate change, the majority of the modeling results show that there will be more runoff in southeast Korea in the future. However, there is substantial uncertainty, with the results ranging from a 5.82% decrease to a 48.15% increase in the mean annual runoff averaged across the study area according to the corresponding climate change scenarios. We then assess the hydrologic perturbations based on the comparison between present and future flow duration curves suggested by IMWI. As a result, the effect of hydrologic perturbation on aquatic ecosystems may be significant at several locations of the Nakdong river main stream in dry season.

Spatial Changes in Work Capacity for Occupations Vulnerable to Heat Stress: Potential Regional Impacts From Global Climate Change

  • Kim, Donghyun;Lee, Junbeom
    • Safety and Health at Work
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 2020
  • Background: As the impact of climate change intensifies, exposure to heat stress will grow, leading to a loss of work capacity for vulnerable occupations and affecting individual labor decisions. This study estimates the future work capacity under the Representative Concentration Pathways 8.5 scenario and discusses its regional impacts on the occupational structure in the Republic of Korea. Methods: The data utilized for this study constitute the local wet bulb globe temperature from the Korea Meteorological Administration and information from the Korean Working Condition Survey from the Occupational Safety and Health Research Institute of Korea. Using these data, we classify the occupations vulnerable to heat stress and estimate future changes in work capacity at the local scale, considering the occupational structure. We then identify the spatial cluster of diminishing work capacity using exploratory spatial data analysis. Results: Our findings indicate that 52 occupations are at risk of heat stress, including machine operators and elementary laborers working in the construction, welding, metal, and mining industries. Moreover, spatial clusters with diminished work capacity appear in southwest Korea. Conclusion: Although previous studies investigated the work capacity associated with heat stress in terms of climatic impact, this study quantifies the local impacts due to the global risk of climate change. The results suggest the need for mainstreaming an adaptation policy related to work capacity in regional development strategies.

Long Range Forecast of Garlic Productivity over S. Korea Based on Genetic Algorithm and Global Climate Reanalysis Data (전지구 기후 재분석자료 및 인공지능을 활용한 남한의 마늘 생산량 장기예측)

  • Jo, Sera;Lee, Joonlee;Shim, Kyo Moon;Kim, Yong Seok;Hur, Jina;Kang, Mingu;Choi, Won Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • 제23권4호
    • /
    • pp.391-404
    • /
    • 2021
  • This study developed a long-term prediction model for the potential yield of garlic based on a genetic algorithm (GA) by utilizing global climate reanalysis data. The GA is used for digging the inherent signals from global climate reanalysis data which are both directly and indirectly connected with the garlic yield potential. Our results indicate that both deterministic and probabilistic forecasts reasonably capture the inter-annual variability of crop yields with temporal correlation coefficients significant at 99% confidence level and superior categorical forecast skill with a hit rate of 93.3% for 2 × 2 and 73.3% for 3 × 3 contingency tables. Furthermore, the GA method, which considers linear and non-linear relationships between predictors and predictands, shows superiority of forecast skill in terms of both stability and skill scores compared with linear method. Since our result can predict the potential yield before the start of farming, it is expected to help establish a long-term plan to stabilize the demand and price of agricultural products and prepare countermeasures for possible problems in advance.

Past and Future Regional Climate Change in Korea

  • Kwon, Won-Tae;Park, Youngeun;Min, Seung-Ki;Oh, Jai-Ho
    • The Korean Journal of Quaternary Research
    • /
    • 제17권2호
    • /
    • pp.161-161
    • /
    • 2003
  • During the last century, most scientific questions related to climate change were focused on the evidence of anthropogenic global warming (IPCC, 2001). There are robust evidences of warming and also human-induced climate change. We now understand the global, mean change a little bit better; however, the uncertainties for regional climate change still remains large. The purpose of this study is to understand the past climate change over Korea based on the observational data and to project future regional climate change over East Asia using ECHAM4/HOPE model and MM5 for downscaling. There are significant evidences on regional climate change in Korea, from several variables. The mean annual temperature over Korea has increased about 1.5∼$1.7^{\circ}C$ during the 20th century, including urbanization effect in large cities which can account for 20-30% of warming in the second half of the 20th century. Cold extreme temperature events occurred less frequently especially in the late 20th century, while hot extreme temperature events were more common than earlier in the century. The seasonal and annual precipitation was analyzed to examine long-term trend on precipitation intensity and extreme events. The number of rainy days shows a significant negative trend, which is more evident in summer and fall. Annual precipitation amount tends to increase slightly during the same period. This suggests an increase of precipitation intensity in this area. These changes may influence on growing seasons, floods and droughts, diseases and insects, marketing of seasonal products, energy consumption, and socio-economic sectors. The Korean Peninsular is located at the eastern coast of the largest continent on the earth withmeso-scale mountainous complex topography and itspopulation density is very high. And most people want to hear what will happen in their back yards. It is necessary to produce climate change scenario to fit forhigh-resolution (in meteorological sense, but low-resolution in socio-economic sense) impact assessment. We produced one hundred-year, high-resolution (∼27 km), regional climate change scenario with MM5 and recognized some obstacles to be used in application. The boundary conditions were provided from the 240-year simulation using the ECHAM4/HOPE-G model with SRES A2 scenario. Both observation and simulation data will compose past and future regional climate change scenario over Korea.

  • PDF

Estimation and Classification of COVID-19 through Climate Change: Focusing on Weather Data since 2018 (기후변화를 통한 코로나바이러스감염증-19 추정 및 분류: 2018년도 이후 기상데이터를 중심으로)

  • Kim, Youn-Su;Chang, In-Hong;Song, Kwang-Yoon
    • Journal of Integrative Natural Science
    • /
    • 제14권2호
    • /
    • pp.41-49
    • /
    • 2021
  • The causes of climate change are natural and artificial. Natural causes include changes in temperature and sunspot activities caused by changes in solar radiation due to large-scale volcanic activities, while artificial causes include increased greenhouse gas concentrations and land use changes. Studies have shown that excessive carbon use among artificial causes has accelerated global warming. Climate change is rapidly under way because of this. Due to climate change, the frequency and cycle of infectious disease viruses are greater and faster than before. Currently, the world is suffering greatly from coronavirus infection-19 (COVID-19). Korea is no exception. The first confirmed case occurred on January 20, 2020, and the number of infected people has steadily increased due to several waves since then, and many confirmed cases are occurring in 2021. In this study, we conduct a study on climate change before and after COVID-19 using weather data from Korea to determine whether climate change affects infectious disease viruses through logistic regression analysis. Based on this, we want to classify before and after COVID-19 through a logistic regression model to see how much classification rate we have. In addition, we compare monthly classification rates to see if there are seasonal classification differences.

Development of an Emissions Processing System for Climate Scenario Inventories to Support Global and Asian Air Quality Modeling Studies

  • Choi, Ki-Chul;Lee, Jae-Bum;Woo, Jung-Hun;Hong, Sung-Chul;Park, Rokjin J.;Kim, Minjoong J.;Song, Chang-Keun;Chang, Lim-Seok
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권4호
    • /
    • pp.330-343
    • /
    • 2017
  • Climate change is an important issue, with many researches examining not only future climatic conditions, but also the interaction of climate and air quality. In this study, a new version of the emissions processing software tool - Python-based PRocessing Operator for Climate and Emission Scenarios (PROCES) - was developed to support climate and atmospheric chemistry modeling studies. PROCES was designed to cover global and regional scale modeling domains, which correspond to GEOS-Chem and CMAQ/CAMx models, respectively. This tool comprises of one main system and two units of external software. One of the external software units for this processing system was developed using the GIS commercial program, which was used to create spatial allocation profiles as an auxiliary database. The SMOKE-Asia emissions modeling system was linked to the main system as an external software, to create model-ready emissions for regional scale air quality modeling. The main system was coded in Python version 2.7, which includes several functions allowing general emissions processing steps, such as emissions interpolation, spatial allocation and chemical speciation, to create model-ready emissions and auxiliary inputs of SMOKE-Asia, as well as user-friendly functions related to emissions analysis, such as verification and visualization. Due to its flexible software architecture, PROCES can be applied to any pregridded emission data, as well as regional inventories. The application results of our new tool for global and regional (East Asia) scale modeling domain under RCP scenario for the years 1995-2006, 2015-2025, and 2040-2055 was quantitatively in good agreement with the reference data of RCPs.

Spatial Downscaling of Precipitation from GCMs for Assessing Climate Change over Han River and Imjin River Watersheds

  • Jang, S.;Hwang, M.;Hur, Y. T.;Yi, J.
    • International conference on construction engineering and project management
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.738-739
    • /
    • 2015
  • The main objective of this study, "Spatial Downscaling of Precipitation from GCMs for Assessing Climate Change over Han River and Imjin River Watersheds", is to carry out over Han River and Imjin River watersheds. To this end, a statistical regression method with MOS (Model Output Statistics) corrections at every downscaling step was developed and applied for downscaling the spatially-coarse Global Climate Model Projections (GCMPs) from CCSM3 and CSIRO with respect to precipitation into 0.1 degree (about 11 km) spatial grid over study regions. The spatially archived hydro-climate data sets such as Willmott, GsMap and APHRODITE datasets were used for MOS corrections by means of monthly climatology between observations and downscaled values. Precipitation values downscaled in this study were validated against ground observations and then future climate simulation results on precipitation were evaluated for the projections.

  • PDF