• 제목/요약/키워드: Global Vibration Analysis

검색결과 141건 처리시간 0.026초

유한요소법을 이용한 수평곡선 I형교의 자유진동해석 (Free Vibration Analysis of Horizontally Curved I-Girder Bridges using the Finite Element Method)

  • 윤기용;강영종
    • 한국강구조학회 논문집
    • /
    • 제10권1호통권34호
    • /
    • pp.47-61
    • /
    • 1998
  • 수평곡선 I형교에서는 곡선주형의 초기곡률로 인하여 휨과 비틀림이 서로 연성 되어 복잡한 거동을 하며. 교량전체 거동에 가로보가 미치는 영향이 상당히 크다. 수평곡선 I형교의 거동특성을 파악하기 위해서는 곡선주형과 함께 가로보를 고려하여야 한다. 본 연구에서는 수평곡선 I형교에 대한 자유진동해석을 위하여 곡선주형을 유한요소 모델링하기 위한 곡선보요소와 가로보를 모델링하기위한 직선보요소를 구성하고, 이들 보요소를 사용한 유한요소 해석 프로그램을 개발한다. 곡선보 요소는 초기곡률과 됨을 고려하기 위하여 박판곡선보 이론에 근거하여 2축 대칭단면을 갖는 I형 곡선보에 대한 유한요소 정식화를 통하여 구성되며, 이때 형상함수는 박판곡선보의 선형 정적 평형방정식의 제차해를 사용한다. 직선보 요소는 됨자유도를 포함하여 절점당 7자유도를 갖는다. 개발한 프로그램에서는 직교좌표계를 사용하여 전체 강성행렬과 전체 질량행렬을 구성하며, 고유치를 구하기 위하여 Gupta의 방법을 사용한다. 기존의 연구결과를 이용하여 구성된 곡선보 요소를 비교검증하고, 수치해석 예제를 통하여 개발한 프로그램의 결과와 쉘요소를 사용하여 범용유한요소해석프로그램으로 수행한 결과를 비교한다.

  • PDF

최신의 전역 최적화 기법에 기반한 헬리콥터 동적 밸런싱 구현에 관한 연구 (Rotor Track and Balance of a Helicopter Rotor System Using Modern Global Optimization Schemes)

  • 유영현;정성남;김창주;김외철
    • 한국항공우주학회지
    • /
    • 제41권7호
    • /
    • pp.524-531
    • /
    • 2013
  • 본 연구에서는 헬리콥터 로터 블레이드의 제작 과정 및 여러 가지 요인으로 인해 발생하는 불균형성을 해소하기 위한 RTB(Rotor Track and Balance) 알고리즘을 개발하였다. 비행 시험 결과로부터 RTB 조절 값과 트랙 및 기체 진동 사이의 상호관계를 선형모델을 이용한 회귀분석을 통하여 RTB 모델을 구축하였다. 개발된 RTB 알고리즘을 실기 시험 결과에 적용하여 RTB 모델을 검증하였고 선형화 모델만으로도 비교적 정확한 모델링이 가능함을 확인하였다. RTB 조절값 설정을 위해 최적화 문제를 정식화하고 유전자 알고리즘에 입자 군집 최적화(PSO) 알고리즘을 결합하여 빠른 수렴성을 갖는 최신의 최적화 기법을 적용하였다. 또한 최적화 해석을 통하여 얻은 RTB 조절값을 이용하여 트랙 편차와 기체 진동을 허용 기준치 아래로 감소시키고, 다양한 비행 조건에 대하여 효율적인 RTB를 수행할 수 있음을 보였다.

Structural identification of Humber Bridge for performance prognosis

  • Rahbari, R.;Niu, J.;Brownjohn, J.M.W.;Koo, K.Y.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.665-682
    • /
    • 2015
  • Structural identification or St-Id is 'the parametric correlation of structural response characteristics predicted by a mathematical model with analogous characteristics derived from experimental measurements'. This paper describes a St-Id exercise on Humber Bridge that adopted a novel two-stage approach to first calibrate and then validate a mathematical model. This model was then used to predict effects of wind and temperature loads on global static deformation that would be practically impossible to observe. The first stage of the process was an ambient vibration survey in 2008 that used operational modal analysis to estimate a set of modes classified as vertical, torsional or lateral. In the more recent second stage a finite element model (FEM) was developed with an appropriate level of refinement to provide a corresponding set of modal properties. A series of manual adjustments to modal parameters such as cable tension and bearing stiffness resulted in a FEM that produced excellent correspondence for vertical and torsional modes, along with correspondence for the lower frequency lateral modes. In the third stage traffic, wind and temperature data along with deformation measurements from a sparse structural health monitoring system installed in 2011 were compared with equivalent predictions from the partially validated FEM. The match of static response between FEM and SHM data proved good enough for the FEM to be used to predict the un-measurable global deformed shape of the bridge due to vehicle and temperature effects but the FEM had limited capability to reproduce static effects of wind. In addition the FEM was used to show internal forces due to a heavy vehicle to to estimate the worst-case bearing movements under extreme combinations of wind, traffic and temperature loads. The paper shows that in this case, but with limitations, such a two-stage FEM calibration/validation process can be an effective tool for performance prognosis.

Fatigue performance of deepwater steel catenary riser considering nonlinear soil

  • Kim, Y.T.;Kim, D.K.;Choi, H.S.;Yu, S.Y.;Park, K.S.
    • Structural Engineering and Mechanics
    • /
    • 제61권6호
    • /
    • pp.737-746
    • /
    • 2017
  • The touch down zone (TDZ) and top connection point of the vessel are most critical part of fatigue damage in the steel catenary riser (SCR). In general, the linear soil model has been used to evaluate fatigue performance of SCRs because it gives conservative results in the TDZ. However, the conservative linear soil model shows the limitation to accommodate real behavior in the TDZ as water depth is increased. Therefore, the riser behavior on soft clay seabed is investigated using a nonlinear soil model through time domain approach in this study. The numerical analysis considering various important parameters of the nonlinear soil model such as shear strength at mudline, shear strength gradient and suction resistance force is conducted to check the adoptability and applicability of nonlinear soil model for SCR design.

자유상태에서 경상용차용 타이어의 진동특성 (Vibration Characteristics of Tires for Light-duty Truck under Free Suspension)

  • 김용우;최동수
    • 한국생산제조학회지
    • /
    • 제9권6호
    • /
    • pp.49-56
    • /
    • 2000
  • Due to the rapid increase of long-distance transportation, particular attentions have been paid to truck tires, especially to their dynamic characteristics. In this research, experimental modal analysis on two kinds of light-duty truck tires, i.e., radial tire and bias tire, are performed by using GRFP(global rational fraction polynomial) method to investigate differences of the dynamic behavior of the two tires. The test results have shown that the modal frequencies of bias tire are much higher than the corresponding values of radial tire with a similar mode shape, which is in accordance with the fact that the radial rigidity of bias tire is higher than that of radial tire. And most of the modal decay rates of bias tire are larger than those of radial tire within the scope of this experiment. In the frequency domain range of test, the bias tire has extra modes, which do not occur in the radial tire. This difference is based on the fact that the circumferential rigidity of the bias tire is quire low whereas that of radial tire is so high that the frequencies of the corresponding modes are out of the frequency range of test.

  • PDF

얇은 원통형 쉘에 발생한 손상 규명 (A DAMAGE IDENTIFICATION METHOD FOR THIN CYLINDRICAL SHELLS)

  • 오혁진;조주용;이우식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.394-399
    • /
    • 2005
  • In this paper, a structural damage identification method (SDIM) is developed to identify the line crack-like directional damages generated within a cylindrical shell. First, the equations of motion fur a damaged cylindrical shell are derived. Based on a theory of continuum damage mechanics, a small material volume containing a directional damage is represented by the effective orthotropic elastic stiffness, which is dependent of the size and the orientation of the damage with respect to the global coordinates. The present SDIM is then derived from the frequency response function (FRF) directly solved from the dynamic equations of the damaged cylindrical shell. In contrast with most existing SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM requires only the FRF-data measured in damaged state. By virtue of utilizing FRF-data, one may choose as many sets of excitation frequency and FRF measurement point as needed to acquire a sufficient number of equations fer damage identification analysis. The numerically simulated damage identification tests are conducted to study the feasibility of the present SDIM.

  • PDF

사다리꼴 주름평판의 음향방사효율 해석 (Prediction of acoustic radiation efficiency for trapezoidal corrugated plates)

  • 유정수;장승호
    • 한국음향학회지
    • /
    • 제42권2호
    • /
    • pp.83-93
    • /
    • 2023
  • 사다리꼴 주름평판은 복잡한 주름 모델링으로 인해 흔히 직교이방성평판으로 단순화하여 해석한다. 그러나 고주파수 대역에서는 주름의 국부 진동으로 인해 직교이방성평판 모델이 유효하지 못하다. 본 연구에서는 파수영역수치해석기법을 이용하여 사다리꼴 주름평판의 고주파수 대역 진동 및 소음 특성을 규명하고, 이를 토대로 주름평판의 주파수 대역별 진동 및 소음 특성을 반영한 근사계산 방법을 제안한다. 근사계산에서는 전역 및 국부 진동을 반영할 수 있도록 주름평판을 네 개의 평판모델로 구성하였으며, 근사계산을 통해 구한 방사효율을 수치해석 결과와 비교함으로써 방법의 신뢰성을 검증하였다.

Influence of the deteriorated anti-seismic devices on seismic performance and device behavior of continuous girder bridges

  • Shangtao Hu;Renkang Hu;Menggang Yang;Dongliang Meng
    • Earthquakes and Structures
    • /
    • 제24권5호
    • /
    • pp.333-343
    • /
    • 2023
  • Various seismic isolation and reduction devices have been applied to suppress the longitudinal vibration of continuous girder bridges. As representative devices, lead rubber bearing (LRB) and fluid viscous damper (FVD) might suffer from deterioration during the long-term service. This study aims to evaluate the impact of device deterioration on the seismic responses of continuous girder bridges and investigate the seismic behavior of deteriorated LRBs and FVDs. Seismic performance of a simplified bridge model was investigated, and the influence of device deterioration was evaluated by the coefficient of variation method. The contribution of LRB and FVD was assessed by the Sobol global sensitivity analysis method. Finally, the seismic behaviors of deteriorated LRBs and FVDs were discussed. The result shows that (i) the girder-pier relative displacement is the most sensitive to the changes in the deterioration level, (ii) the deterioration of FVD has a greater effect on the structural responses than that of LRB, (iii) FVD plays a major role in energy dissipation with a low degradation level while LRB is more essential in dissipating energy when suffering from high degradation level, (iv) the deteriorated devices are more likely to reach the ultimate state and thus be damaged.

Nonlinear response of r.c. framed buildings retrofitted by different base-isolation systems under horizontal and vertical components of near-fault earthquakes

  • Mazza, Fabio;Mazza, Mirko;Vulcano, Alfonso
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.135-144
    • /
    • 2017
  • Near-fault ground motions are characterized by high values of the ratio between the peak of vertical and horizontal ground accelerations, which can significantly affect the nonlinear response of a base-isolated structure. To check the effectiveness of different base-isolation systems for retrofitting a r.c. framed structure located in a near-fault area, a numerical investigation is carried out analyzing the nonlinear dynamic response of the fixed-base and isolated structures. For this purpose, a six-storey r.c. framed building is supposed to be retrofitted by insertion of an isolation system at the base for attaining performance levels imposed by current Italian code in a high-risk seismic zone. In particular, elastomeric (e.g., high-damping-laminated-rubber bearings, HDLRBs) and friction (e.g., steel-PTFE sliding bearings, SBs, or friction pendulum bearings, FPBs) isolators are considered, with reference to three cases of base isolation: HDLRBs acting alone (i.e., EBI structures); in-parallel combination of HDLRBs and SBs (i.e., EFBI structures); FPBs acting alone (i.e., FPBI structures). Different values of the stiffness ratio, defined as the ratio between the vertical and horizontal stiffnesses of the HDLRBs, sliding ratio, defined as the global sliding force divided by the maximum sliding force of the SBs, and in-plan distribution of friction coefficient for the FPs are investigated. The EBI, EFBI and FPBI base-isolation systems are designed assuming the same values of the fundamental vibration period and equivalent viscous damping ratio. The nonlinear dynamic analysis is carried out with reference to near-fault earthquakes, selected and scaled on the design hypotheses adopted for the test structures.

Health assessment of RC building subjected to ambient excitation : Strategy and application

  • Mehboob, Saqib;Khan, Qaiser Uz Zaman;Ahmad, Sohaib;Anwar, Syed M.
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.185-201
    • /
    • 2022
  • Structural Health Monitoring (SHM) is used to provide reliable information about the structure's integrity in near realtime following extreme incidents such as earthquakes, considering the inevitable aging and degradation that occurs in operating environments. This paper experimentally investigates an integrated wireless sensor network (Wi-SN) based monitoring technique for damage detection in concrete structures. An effective SHM technique can be used to detect potential structural damage based on post-earthquake data. Two novel methods are proposed for damage detection in reinforced concrete (RC) building structures including: (i) Jerk Energy Method (JEM), which is based on time-domain analysis, and (ii) Modal Contributing Parameter (MCP), which is based on frequency-domain analysis. Wireless accelerometer sensors are installed at each story level to monitor the dynamic responses from the building structure. Prior knowledge of the initial state (immediately after construction) of the structure is not required in these methods. Proposed methods only use responses recorded during ambient vibration state (i.e., operational state) to estimate the damage index. Herein, the experimental studies serve as an illustration of the procedures. In particular, (i) a 3-story shear-type steel frame model is analyzed for several damage scenarios and (ii) 2-story RC scaled down (at 1/6th) building models, simulated and verified under experimental tests on a shaking table. As a result, in addition to the usual benefits like system adaptability, and cost-effectiveness, the proposed sensing system does not require a cluster of sensors. The spatial information in the real-time recorded data is used in global damage identification stage of SHM. Whereas in next stage of SHM, the damage is detected at the story level. Experimental results also show the efficiency and superior performance of the proposed measuring techniques.