• Title/Summary/Keyword: Global Tracking System

Search Result 260, Processing Time 0.025 seconds

Aviation Safety Regulation and ICAO's Response to Emerging Issues (항공안전규제와 새로운 이슈에 대한 ICAO의 대응)

  • Shin, Dong-Chun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.1
    • /
    • pp.207-244
    • /
    • 2015
  • Aviation safety is the stage in which the risk of harm to persons or of property damage is reduced to, and maintained at or below, an acceptable level through a continuing process of hazard identification and risk management. Many accidents and incidents have been taking place since 2014, while there had been relatively safer skies before 2014. International civil aviation community has been exerting great efforts to deal with these emerging issues, thus enhancing and ensuring safety throughout the world over the years. The Preamble of the Chicago Convention emphasizes safety and order of international air transport, and so many Articles in the Convention are related to the safety. Furthermore, most of the Annexes to the Convention are International Standards and Recommended Practices pertaining to the safety. In particular, Annex 19, which was promulgated in Nov. 2013, dealing with safety management system. ICAO, as law-making body, has Air Navigation Commission, Council, Assembly to deliberate and make decisions regarding safety issues. It is also implementing USOAP and USAP to supervise safety functions of member States. After MH 370 disappeared in 2014, ICAO is developing Global Tracking System whereby there should be no loophole in tracking the location of aircraft anywhere in world with the information provided by many stakeholders concerned. MH 17 accident drove ICAO to install web-based repository where information relating to the operation in conflict zones is provided and shared. In addition, ICAO has been initiating various solutions to emerging issues such as ebola outbreak and operation under extreme meteorological conditions. Considering the necessity of protection and sharing of safety data and information to enhance safety level, ICAO is now suggesting enhanced provisions to do so, and getting feedback from member States. It has been observed that ICAO has been approaching issues towards problem-solving from four different dimensions. First regarding time, it analyses past experiences and best practices, and make solutions in short, mid and long terms. Second, from space perspective, ICAO covers States, region and the world as a whole. Third, regarding stakeholders it consults with and hear from as many entities as it could, including airlines, airports, community, consumers, manufacturers, air traffic control centers, air navigation service providers, industry and insurers. Last not but least, in terms of regulatory changes, it identifies best practices, guidance materials and provisions which could become standards and recommended practices.

Low energy ultrasonic single beacon localization for testing of scaled model vehicle

  • Dubey, Awanish C.;Subramanian, V. Anantha;Kumar, V. Jagadeesh
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.391-407
    • /
    • 2019
  • Tracking the location (position) of a surface or underwater marine vehicle is important as part of guidance and navigation. While the Global Positioning System (GPS) works well in an open sea environment but its use is limited whenever testing scaled-down models of such vehicles in the laboratory environment. This paper presents the design, development and implementation of a low energy ultrasonic augmented single beacon-based localization technique suitable for such requirements. The strategy consists of applying Extended Kalman Filter (EKF) to achieve location tracking from basic dynamic distance measurements of the moving model from a fixed beacon, while on-board motion sensor measures heading angle and velocity. Iterative application of the Extended Kalman Filter yields x and y co-ordinate positions of the moving model. Tests performed on a free-running ship model in a wave basin facility of dimension 30 m by 30 m by 3 m water depth validate the proposed model. The test results show quick convergence with an error of few centimeters in the estimated position of the ship model. The proposed technique has application in the real field scenario by replacing the ultrasonic sensor with industrial grade long range acoustic modem. As compared with the existing systems such as LBL, SBL, USBL and others localization techniques, the proposed technique can save deployment cost and also cut the cost on number of acoustic modems involved.

HF Data Communication Service Using SSB Modems for Maritime Applications (SSB 모뎀을 이용한 해상용 HF 데이터 통신 서비스)

  • Choo, Young-Yeol;Jung, Da-Un
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2549-2554
    • /
    • 2011
  • This paper describes on development of integrated interface and applications to support stable digital data communication service for small and midium sized crafts exploiting SSB modems and HF wireless sets. Firstly, integrated interface module between GPS (Global Positioning System) and communication devices was developed. Secondly, maritime map was implemented into a display terminal to provide location tracking service and voyage planning function. In addition, condition monitoring service of crafts and fishing report functions as well as alarm functions were developed to support secure fishery. Results of performance measure on developed application services shows that error rate was less than 3% and communication delay was shorter than 1 second when a message length was less than 1 Kbyte along with one-to-many communication type.

Performance Improvement of 2-Frame PTV Method Using an Adaptive Hybrid Scheme (적응형 하이브리드 기법을 이용한 2-Frame PTV 기법의 성능향상 연구)

  • Kim, Hyoung-Bum;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.443-449
    • /
    • 2000
  • The performance of 2-frame PTV(particle tracking velocimetry) system was improved using an adaptive hybrid scheme. The original 2-frame PTV method based on the match probability concept employs global match parameters for the entire flow field. Since this does not reflect fully the detailed local velocity change, it sometimes reduces the recovery rate of velocity vectors and increases the number of erroneous vectors in the region where an extraordinary flow structure exists. In this study, the preliminary FFT-based PIV results are used as an input parameter to determine the local match parameters needed for the 2-frame particle tracking algorithm. A computer simulation using synthetic particle images was carried out to study the performance of the adaptive 2-frame PTV technique. The adaptive hybrid method shows the better performance with increasing the velocity vector recovery rate and decreasing the computation time, compared to the original 2-frame PTV method.

The Design of a Small GNSS Receiver with Enhanced Interference Suppression Capability for High Mobility

  • Park, Yong-Hyun;Moon, Sung-Wook;Shin, Bong-Gyu;Oh, Jong-Su
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • The applications of Global Navigation Satellite System (GNSS) receivers are becoming wider in various commercial and military systems including even small weapon systems such as artillery shells. The precision-guided munitions such as Small Diameter Bomb (SDB) of United States can be used for pinpoint strike by acquiring and tracking GNSS signals in high mobility situation. In this paper, a small GNSS receiver with embedded interference suppression capability working under high dynamic stress is developed which is applicable to the various weapon systems and can be used in other several harsh environments. It applies a kind of matched filter and multiple correlator schemes for fast signal acquisition and tracking of even weak signals and frequency domain signal processing method to eliminate the narrowband interference. To evaluate the performance of the developed GNSS receiver, the test scenario of high mobility and interference environment with the GNSS simulator and signal generator is devised. Then, the signal acquisition time, navigation accuracy, sensitivity, and interference suppression performances under high dynamic operation are evaluated. And the comparison test with the commercial GNSS receiver which has high sensitivity is made under the same test condition.

Local Signal Design for Binary Offset Carrier Signals (이진 옵셋 반송파 신호에 알맞은 국소신호 설계)

  • Kim, Hongdeuk;Yoon, Seokho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.10
    • /
    • pp.845-849
    • /
    • 2013
  • In this paper, we design local signals to remove side-peaks in the binary offset carrier (BOC) autocorrelation. Specifically, we first investigate why local signals of the conventional schemes are applicable to either sine or cosine-phased BOC signals, and then, design local signals applicable to both sine and cosine-phased BOC signals. Finally, we obtain two partial correlations and propose a correlation function with no side-peak via a combination of the partial correlations. From numerical results, we demonstrate that the designed local signals are applicable to both sine and cosine-phased BOC signals and can remove side-peaks completely.

Real-time Location Tracking Analysis of Cross-country Skiing using Various Wearable Devices: A Case Study (다양한 웨어러블 디바이스를 활용한 크로스컨트리스키 실시간 위치 추적: 사례 연구)

  • Hwang, Jinny;Kim, Jinhae;Kim, Hyeyoung;Moon, Jeheon;Lee, Jusung;Kim, Jinhyeok
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Objective: The purpose of this study was to confirm that the cross-country ski sprint course in PyeongChang, where the 2018 Winter Olympics course was to utilize wearable devices equipped with inertial measurement unit (IMU), global positioning system (GPS) and heart rates sensor. Method: For the data collection, two national level cross-country (XC) skiers performed classic technique on the entire sprint course. We analyzed cycle characteristics, range of motion on double poling (DP) technique, average velocity, and displacement of 3 points according to the terrain. Results: The absolute cycle time gradually decreased during starting, middle and finish sections. While the length of the DP increased and the heart rates tended to increase for men skier. In addition, the results indicated that range of motion of knee joint during starting and finish section decreased more than middle section. The errors of latitude and longitude data collected through GPS were within 3 m from 3 points. Conclusion: Through the first case study in Korea, which analyzed the location and condition of XC skiers in the entire sprint course in real time, confirmed that feedback was available in the field using various wearable sensors.

Position and Measurement Performance Analysis of GPS Receiver applied LQG based Vector Tracking Loop (LQG 기반 벡터 추적 루프를 적용한 GPS 수신기의 위치 및 측정치 성능 분석)

  • Park, Min-Huck;Jeon, Sang-Hoon;Kim, Chong-Won;Kee, Chang-Don;Seo, Seung-Woo;Jang, Jae-Gyu;So, Hyoung-Min;Park, Jun-Pyo
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.43-49
    • /
    • 2017
  • Generally, loop filter based scalar tracking loops (LF-STL) have been used for global positioning system (GPS) signal tracking algorithm. This paper introduces the accuracy and robustness of linear-quadratic-Gaussian based vector tracking loop (LQG-VTL) algorithm instead of LF-STL. To verify the accuracy of LQG-VTL, we confirm that the measurements estimation errors of the LQG based scalar tracking loops (LQG-STL) are improved by more than 60 % compared to LF-STL. Also, when LQG-VTL is used, measurements estimation errors decrease compared to LQG-STL, and position/velocity estimation errors also decrease as the number of satellites increases. To verify the robustness of LQG-VTL, we confirm that LQG-VTL can estimate position/velocity and measurements successively compared to LF-STL in temporal signal attenuation of 30 dB-Hz during 4 seconds.

Residential Solar Cell System by driving of High Efficiency Inverter

  • Kwak Dong-Kurl;Lee Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.687-691
    • /
    • 2001
  • With today's global environmental and energy problems, high expectations exist for solar power generation to reduce carbon dioxide generated by the consumption of fossil fuels. On the other hand, power consumption in residential homes is increasing every year. Among the many household appliances, the power demand for air conditioners increases dramatically during the summer, particularly in the afternoons. As this pattern closely matches the output pattern of solar cells, it should be possible to combine a photovoltaic array with an air conditioner to decrease the energy consumption within the home. We have developed a residential solar-powered air conditioner that operates through a combination of photovoltaic array and commercial power. In this paper, the configuration and specification of the residential solar-powered system are described to a novel high efficiency inverter using a ZVCS boost converter. And the performance evaluations of the solar-powered air conditioner are examined by the analysis of a new tracking controller with a maximum power $P_{max}$ detection of solar cell.

  • PDF

Analysis of Coarse Acquisition Code Generation Algorithm in GPS System (GPS 시스템의 C/A 부호 생성 알고리듬의 분석)

  • Zhang, Wei;Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • In this paper, the coarse acquisition code (C/A code), for civil navigation, of the ranging codes for Global Positioning System (GPS) is studied, simulated and analyzed by using Matlab. We can see with the simulation results that the correctness of the method and feasibility, which is at simulation platform to further study on the real environment of GPS signal, can be confirmed. With using this results, we think, the complexity of tracking the satellite signal environment can be captured, and the performance of satellite receiver will be improved.