• Title/Summary/Keyword: Global Precipitation

Search Result 389, Processing Time 0.029 seconds

Nanomaterials Research Using Quantum Beam Technology

  • Kishimoto, Naoki;Kitazawa, Hideaki;Takeda, Yoshihiko
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.7-7
    • /
    • 2011
  • Quantum beam technology has been expected to develop breakthroughs for nanotechnology during the third basic plan of science and technology (2006~2010). Recently, Green- or Life Innovations has taken over the national interests in the fourth basic science and technology plan (2011~2015). The NIMS (National Institute for Materials Science) has been conducting the corresponding mid-term research plans, as well as other national projects, such as nano-Green project (Global Research for Environment and Energy based on Nanomaterials science). In this lecture, the research trends in Japan and NIMS are firstly reviewed, and the typical achievements are highlighted over key nanotechnology fields. As one of the key nanotechnologies, the quantum beam research in NIMS focused on synchrotron radiation, neutron beams and ion/atom beams, having complementary attributes. The facilities used are SPring-8, nuclear reactor JRR-3, pulsed neutron source J-PARC and ion-laser-combined beams as well as excited atomic beams. Materials studied are typically fuel cell materials, superconducting/magnetic/multi-ferroic materials, quasicrystals, thermoelectric materials, precipitation-hardened steels, nanoparticle-dispersed materials. Here, we introduce a few topics of neutron scattering and ion beam nanofabrication. For neutron powder diffraction, the NIMS has developed multi-purpose pattern fitting software, post RIETAN2000. An ionic conductor, doped Pr2NiO4, which is a candidate for fuel-cell material, was analyzed by neutron powder diffraction with the software developed. The nuclear-density distribution derived revealed the two-dimensional network of the diffusion paths of oxygen ions at high temperatures. Using the high sensitivity of neutron beams for light elements, hydrogen states in a precipitation-strengthened steel were successfully evaluated. The small-angle neutron scattering (SANS) demonstrated the sensitive detection of hydrogen atoms trapped at the interfaces of nano-sized NbC. This result provides evidence for hydrogen embrittlement due to trapped hydrogen at precipitates. The ion beam technology can give novel functionality on a nano-scale and is targeting applications in plasmonics, ultra-fast optical communications, high-density recording and bio-patterning. The technologies developed are an ion-and-laser combined irradiation method for spatial control of nanoparticles, and a nano-masked ion irradiation method for patterning. Furthermore, we succeeded in implanting a wide-area nanopattern using nano-masks of anodic porous alumina. The patterning of ion implantation will be further applied for controlling protein adhesivity of biopolymers. It has thus been demonstrated that the quantum beam-based nanotechnology will lead the innovations both for nano-characterization and nano-fabrication.

  • PDF

Study on the Yellow Sandy Dust Phenomena in Korean Peninsula and Chemical Compositions in Fine Particles at Background Sites of Korea. (한반도의 황사 관측현황 및 배경지역 미세먼지의 화학적 조성에 관한 연구)

  • Baek Kwang-Wook;Chung Jin-Do
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.4 s.54
    • /
    • pp.9-18
    • /
    • 2004
  • In this study, the observation data for the yellow sandy dust phenomena from the year 1999 to 2003 at background sites in Korea were collected at Global Atmospheric Observatory at An-Myeon island and its temporal variation were analyzed. The chemical characteristics of the fine particles were also analyzed in order to evaluate sources of the yellow sandy dust particles. The results showed that the monthly average mass concentration of the fine particles was the highest in springtime and the lowest in summertime in general. The magnitude of its variation was also the highest in March in which the occurrence of yellow sandy dust was the most frequent and thus the number of samples was the largest, while the lowest in June through September. The yearly variation of ion components contributions to the total mass concentration of the fine particles was slowly decreasing, showing that $63\%$ in 1999, $59\%$ in 2000 and $56\%$ in 2003. The most prevalent ion components in the fine particles were found to be $NO_3$ and $SO_4^{2-}$, which are known to be source materials of acidic precipitation, and $NH_4^+$, a neutralizing material of the acid precipitation. Relative proportion of metal components in the fine particles was calculated as $14\%$ in average, and their concentrations are in an order of Fe > Al > Na > Ca > Zn > Pb > Cu > Mn > Ni > Cd > Cr > Co > U. The results indicated that main sources of the metals was soil-originated Fe, Al, Ca, and Mg, and the contribution of anthropogenic air Pollution-originated Zn, Pb, Cu, Mn were also high and keep slightly increasing. Statistical analysis showed that the chemical components could be divided into soil-originated group of Mg, Al, Ca, Fe, and Mn and air pollution-originated group of $NO_3$, Zn, Pb, and they are occupying more than $60\%$of all the components in the dusty sand. The results explain that An-Myeon island is more influenced by soil-originated source than ocean-originated one and also the influencing strength of anthropogenic poilution-originated source is less than $50\%$ of that of soil-originated sources. Compared to non-yellow sandy period, the yellow sandy dust period showed that the amounts of soil-originated $Mg^{2+}$ and $Ca^{2+}$ and ocean-originated $Na^+$ and $Cl^-$ were increased to more than double and the metals of Mg, Al, Ca, Fe were also highly increased, while micro metal components such as Pb, Cd, Zn, which have a tendency of concentrating in air, were either decreased or maintained at nearly constant level. In the period of yellow sandy dust, a strong positive correlation was observed between water soluble ions and between metals in terms of its concentration, respectively. Factor analysis showed that the first group being comprised of about $43\%$ of the total inorganic components was affected by soil and they are ions of $Na^+,\;Mg^{2+}\;and\;Ca^{2+}$ and metals of Na, Fe, Mn and Ni. The result also showed that the metals of Mg and Cr were classified as second group and they were also highly affected by soil sources.

Interannual variabilities of the East Asia precipitation associated with tropical and subtropical sea surface temperature (열대 및 아열대 SST에 관련된 동아시아 강우량의 경년 변동성)

  • Ha, Kyung-Ja
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.28-28
    • /
    • 1995
  • The aim of the present study is to investigate the interannual variabilities of the East Asia monsoon rainfall associated with the global sea surface temperature anomaly(SSTA). For this study, the summer rainfall(from June to August) over the twenty-eight period of 1961-1988 were analyzed with being divided by nine-subregions over East Asia including Korea, China and Japan. From the analysis of the principal modes explaining the interannual variation, the interannual variabilities of summer rainfalls in South Japan and Korea are larger than those of the other subregions of the East Asia. There is a strong negative correlation between the summer rainfalls of south China and Korea. In this study, the relationship between the summer monsoon of each subregion and SSTs of the tropical NINO regions, of western Pacific warm pool, and of the subtropical ocean were investigated. The longitudinal sections of the lagged cross correlations of the summer rainfal1 anomaly in (a) Korea and (b) south China, and the monthly SSTA in the equatorial(averaged from 65 to 6N) Pacific were analyzed. The negative maximum correlation pattems of Korea''s stammer rainfal1 and SSTs over the eastern Pacific is transfered to positive maximum conrlation over central Pacific region with a biennial periodicity. In South China, the significant positive correlations are found at -12 month lag over the eastern Pacific and maximum negative correlation at 16 month lag over the central Pacific with the quasi-biennial oscillation. But the correlation coefficient reverses completely to that in Korea. In order to investigate the most prevailing interannual variability of rainfall related to the favored SSTA region, the lagged cross correlations between East Asia rainfall and SSTs over the moO regions(NINO 1+2(0-105, 90W-80W), NINO 3(5N-5S, 150W-90W), NINO 4(5N-5S, 160E-l50W) and the western Pacific worm pool (5N-5S, 120E-l60E) were analyzed. Among the lagged cross-correlation cycles in NINO regions, the maximum correlations for the negative lagged months prevail in NINO 1+2 and NINO 3, and the cross correlations for the positive lagged months NINO 4. It is noteworthy that correlation between the western Pacific warm pool SSTA and the monsoon rainfall in Korea and South China have the maximum value at negative 4 month lag. The evolution of the correlation between the East Asia monsoon rainfall and SSTA is linked to the equatorial convective cluster and related to northward propagating situation, and raising the possibility that the East Asia monsoon precipitation may be more fundamentally related to the interaction of intraseasonal oscillations and the sub-regional characteristics including the surface boundary conditions and the behavior of climatological air mass.

Interannual variabilities of the East Asia precipitation associated with tropical and subtropical sea surface temperature (열대 및 아열대 SST에 관련된 동아시아 강우량의 경년 변동성)

  • 하경자
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.413-426
    • /
    • 1995
  • The aim of the present study is to investigate the interannual variabilities of the East Asia monsoon rainfall associated with the global sea surface temperature anomaly(SSTA). For this study, the summer rainfall(from June to August) over the twenty-eight period of 1961-1988 were analyzed with being divided by nine-subregions over East Asia including Korea, China and Japan. From the analysis of the principal modes explaining the interannual variation, the interannual variabilities of summer rainfalls in South Japan and Korea are larger than those of the other subregions of the East Asia. There is a strong negative correlation between the summer rainfalls of south China and Korea. In this study, the relationship between the summer monsoon of each subregion and SSTs of the tropical NINO regions, of western Pacific warm pool, and of the subtropical ocean were investigated. The longitudinal sections of the lagged cross correlations of the summer rainfal1 anomaly in (a) Korea and (b) south China, and the monthly SSTA in the equatorial(averaged from 65 to 6N) Pacific were analyzed. The negative maximum correlation pattems of Korea's stammer rainfal1 and SSTs over the eastern Pacific is transfered to positive maximum conrlation over central Pacific region with a biennial periodicity. In South China, the significant positive correlations are found at -12 month lag over the eastern Pacific and maximum negative correlation at 16 month lag over the central Pacific with the quasi-biennial oscillation. But the correlation coefficient reverses completely to that in Korea. In order to investigate the most prevailing interannual variability of rainfall related to the favored SSTA region, the lagged cross correlations between East Asia rainfall and SSTs over the moO regions(NINO 1+2(0-105, 90W-80W), NINO 3(5N-5S, 150W-90W), NINO 4(5N-5S, 160E-l50W) and the western Pacific worm pool (5N-5S, 120E-l60E) were analyzed. Among the lagged cross-correlation cycles in NINO regions, the maximum correlations for the negative lagged months prevail in NINO 1+2 and NINO 3, and the cross correlations for the positive lagged months NINO 4. It is noteworthy that correlation between the western Pacific warm pool SSTA and the monsoon rainfall in Korea and South China have the maximum value at negative 4 month lag. The evolution of the correlation between the East Asia monsoon rainfall and SSTA is linked to the equatorial convective cluster and related to northward propagating situation, and raising the possibility that the East Asia monsoon precipitation may be more fundamentally related to the interaction of intraseasonal oscillations and the sub-regional characteristics including the surface boundary conditions and the behavior of climatological air mass.

  • PDF

Observational Characteristics of East Asian Monsoon during the Summers of 1993 and 1994 (1993, 1994년 여름철 동아시아몬순의 관측 특성)

  • Kim, Baek-Jo;Ryu, Chan-Su
    • Journal of the Korean earth science society
    • /
    • v.23 no.4
    • /
    • pp.369-379
    • /
    • 2002
  • The characteristics of the East Asian summer monsoon circulation associated with the cool and wet summer of 1993 and the warm and dry summer of 1994 are investigated by analyzing the atmospheric circulations features in the upper and lower troposphere and by examining the global SST and associated tropical convective precipitation fields. The negative geopotential height anomalies at 500 hPa and 200 hPa in 1993 over East Asia, the central North Pacific, and the western United States were replaced by positive ones in 1994. In addition, the 200 hPa zonal wind anomaly averaged over the East Asian summer monsoon region is negatively correlated with the Korean summer temperature anomaly. The subtropical jet stream in 1993 was displaced into the central part of Korea well south of its normal position. The western Pacific subtropical high was shifted southward, and the East Asian summer rainfall and temperature was above-normal and below-normal, respectively due to the southwestward extension of a cold and dry polar airmass from the Sea of Okhotsk to the Est Sea. In contrast, the subtropical jet stream in 1994 was displaced well north of its normal position. The abrupt northward shift of the western Pacific subtropical high was accompanied with the rapid northward movement of the rain band of the East Asian summer monsoon rainfall. The anomaly patterns of the East Asia summer rainfall and temperature were opposite to those of 1993. Large sea surface temperature anomalies of opposite signs existed in the tropical Pacific with a mature El $Ni{\~{n}o$ in 1993 and a weak La $Ni{\~{n}a$ condition in 1994. The role of the anomalous convective precipitation in the western Pacific and the Indian Ocean related with the variations in the low-level cross-equatorial flow along the northwestern periphery of the Australian high and the Mascarene high is probably to influence a large-scale atmospheric circulation over the East Asia during both the years.

The Characteristics and Survival Rates of Evergreen Broad-Leaved Tree Plantations in Korea (난대상록활엽수종 조림지 활착률과 영향인자)

  • Park, Joon-Hyung;Jung, Su-Young;Lee, Kwang-Soo;Lee, Ho-Sang
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.513-521
    • /
    • 2019
  • With rapid climate change and increasing global warming, the distribution of evergreen broad-leaved trees (EBLTs) is gradually expanding to the inland regions of Korea. The aim of the present study was to analyze the survival rate of 148 EBLT plantations measuring 180 ha and to determine the optimal plantation size that would help in coping with climate change in the warm, temperate climate zone of the Korean peninsula. For enhancing the reliability of our estimated survival model, we selected a set of 11 control variables that may have also influenced the survival rates of the EBLTs in the 148 plantations. The results of partial correlation analysis showed that the survival rate of 67.0±26.9 of the EBLTs in the initial plantation year was primarily correlated with plantation type by the crown closure of the upper story of the forest, wind exposure, and precipitation. For predicting the probability of survival by quantification theory, 148 plots were surveyed and analyzed with 11 environmental site factors. Survival rate was in the order of plantation type by the crown closure of upper story of the forest, wind exposure, total cumulative precipitation for two weeks prior to planting, and slope stiffness in the descending order of score range in the estimated survival model for the EBLTs with the fact that survival rate increased with shade rate of upper story to some extent.

Flood Forecasting and Warning Using Neuro-Fuzzy Inference Technique (Neuro-Fuzzy 추론기법을 이용한 홍수 예.경보)

  • Yi, Jae-Eung;Choi, Chang-Won
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.341-351
    • /
    • 2008
  • Since the damage from the torrential rain increases recently due to climate change and global warming, the significance of flood forecasting and warning becomes important in medium and small streams as well as large river. Through the preprocess and main processes for estimating runoff, diverse errors occur and are accumulated, so that the outcome contains the errors in the existing flood forecasting and warning method. And estimating the parameters needed for runoff models requires a lot of data and the processes contain various uncertainty. In order to overcome the difficulties of the existing flood forecasting and warning system and the uncertainty problem, ANFIS(Adaptive Neuro-Fuzzy Inference System) technique has been presented in this study. ANFIS, a data driven model using the fuzzy inference theory with neural network, can forecast stream level only by using the precipitation and stream level data in catchment without using a lot of physical data that are necessary in existing physical model. Time series data for precipitation and stream level are used as input, and stream levels for t+1, t+2, and t+3 are forecasted with this model. The applicability and the appropriateness of the model is examined by actual rainfall and stream level data from 2003 to 2005 in the Tancheon catchment area. The results of applying ANFIS to the Tancheon catchment area for the actual data show that the stream level can be simulated without large error.

Prediction of Shift in Fish Distributions in the Geum River Watershed under Climate Change (기후변화에 따른 금강 유역의 어류 종분포 변화 예측)

  • Bae, Eunhye;Jung, Jinho
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.3
    • /
    • pp.198-205
    • /
    • 2015
  • Impacts of climate change on aquatic ecosystems range from changes in physiological processes of aquatic organisms to species distribution. In this study, MaxEnt that has high prediction power without nonoccurrence data was used to simulate fish distribution changes in the Geum river watershed according to climate change. The fish distribution in 2050 and 2100 was predicted with RCP 8.5 climate change scenario using fish occurrence data (a total of 47 species, including 17 endemic species) from 2007 to 2009 at 134 survey points and 9 environmental variables (monthly lowest, highest and average air temperature, monthly precipitation, monthly lowest, highest and average water temperature, altitude and slope). The fitness of MaxEnt modeling was successful with the area under the relative operating characteristic curve (AUC) of 0.798, and environmental variables that showed a high level of prediction were as follows: altitude, monthly average precipitation and monthly lowest water temperature. As climate change proceeds until 2100, the probability of occurrence for Odontobutis interrupta and Acheilognathus yamatsuatea (endemic species) decreases whereas the probability of occurrence for Microphysogobio yaluensis and Lepomis macrochirus (exotic species) increases. In particular, five fish species (Gnathopogon strigatus, Misgurnus mizolepis, Erythroculter erythropterus, A. yamatsuatea and A. koreensis) were expected to become extinct in the Geum river watershed in 2100. In addition, the species rich area was expected to move to the northern part of the Geum river watershed. These findings suggest that water temperature increase caused by climate change may disturb the aquatic ecosystem of Geum river watershed significantly.

Assessment of Environmental Radioactivity Surveillance Results around Korean Nuclear Power Utilization Facilities in 2017

  • Kim, Cheol-Su;Lee, Sang-Kuk;Lee, Dong-Myung;Choi, Seok-Won
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.3
    • /
    • pp.118-126
    • /
    • 2019
  • Background: Government conducts environmental radioactivity surveillance for verification purpose around nuclear facilities based on the Nuclear Safety Law and issues a surveillance report every year. This study aims to evaluate the short and the long-term fluctuation of radionuclides detected above MDC and their origins using concentration ratios between these radionuclides. Materials and Methods: Sample media for verification surveillance are air, rainwater, groundwater, soil, and milk for terrestrial samples, and seawater, marine sediment, fish, and seaweed for marine samples. Gamma-emitting radionuclides including $^{137}Cs$, $^{90}Sr$, Pu, $^3H$, and $^{14}C$ are evaluated in these samples. Results and Discussion: According to the result of the environmental radioactivity verification surveillance in the vicinity of nuclear power facilities in 2017, the anthropogenic radionuclides were not detected in most of the environmental samples except for the detection of a trace level of $^{137}Cs$, $^{90}Sr$, Pu, and $^{131}I$ in some samples. Radioactivity concentration ratios between the anthropogenic radionuclides ($^{137}Cs/^{90}Sr$, $^{137}Cs/^{239+240}Pu$, $^{90}Sr/^{239+240}Pu$) were similar to those reported in the environmental samples, which were affected by the global fallout of the past nuclear weapon test, and Pu atomic ratios ($^{240}Pu/^{239}Pu$) in the terrestrial sample and marine sample showed significant differences due to the different input pathway and the Pu source. Radioactive iodine ($^{131}I$) was detected at the range of < $5.6-190mBq{\cdot}kg-fresh^{-1}$ in the gulfweed and sea trumpet collected from the area of Kori and Wolsong intake and discharge. A high level of $^3H$ was observed in the air (Sangbong: $0.688{\pm}0.841Bq{\cdot}m^{-3}$) and the precipitation (Meteorology Post: $199{\pm}126Bq{\cdot}L^{-1}$) samples of the Wolsong nuclear power plant (NPP). $^3H$ concentration in the precipitation and pine needle samples showed typical variation pattern with the distance and the wind direction from the stack due to the gaseous release of $^3H$ in Wolsong NPP. Conclusion: Except for the detection of a trace level of $^{137}Cs$, $^{90}Sr$, Pu, and $^{131}I$ in some samples, anthropogenic radionuclides were below MDC in most of the environmental samples. Overall, no unusual radionuclides and abnormal concentration were detected in the 2017's surveillance result for verification. This research will be available in the assessment of environment around nuclear facilities in the event of radioactive material release.

A Development of Hydrological Model Calibration Technique Considering Seasonality via Regional Sensitivity Analysis (지역적 민감도 분석을 이용하여 계절성을 고려한 수문 모형 보정 기법 개발)

  • Lee, Ye-Rin;Yu, Jae-Ung;Kim, Kyungtak;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.337-352
    • /
    • 2023
  • In general, Rainfall-Runoff model parameter set is optimized using the entire data to calculate unique parameter set. However, Korea has a large precipitation deviation according to the season, and it is expected to even worsen due to climate change. Therefore, the need for hydrological data considering seasonal characteristics. In this study, we conducted regional sensitivity analysis(RSA) using the conceptual Rainfall-Runoff model, GR4J aimed at the Soyanggang dam basin, and clustered combining the RSA results with hydrometeorological data using Self-Organizing map(SOM). In order to consider the climate characteristics in parameter estimation, the data was divided based on clustering, and a calibration approach of the Rainfall-Runoff model was developed by comparing the objective functions of the Global Optimization method. The performance of calibration was evaluated by statistical techniques. As a result, it was confirmed that the model performance during the Cold period(November~April) with a relatively low flow rate was improved. This is expected to improve the performance and predictability of the hydrological model for areas that have a large precipitation deviation such as Monsoon climate.