• Title/Summary/Keyword: Global Passenger

Search Result 80, Processing Time 0.028 seconds

Steady State Performance Analysis of the Multi-mode Power Transmission Systems Equipped on Passenger Car (승용차용 다중모드 동력 전달 시스템의 정상상태 성능분석)

  • Lim, Won-Sik;Park, Yun-Kyoung;Park, Sung-Cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.364-371
    • /
    • 2013
  • Because of the increases in international oil prices and the level of global warming, the automotive industry has much interest in developing green cars with high fuel efficiencies. In addition, researchers in Korea are actively responding to high oil prices and $CO_2$ emission regulations in many ways. One example is, the multi-mode hybrid system, which is being studied to improve its performance. Because a multi-mode hybrid system is able to overcome the weaknesses of a system that uses simple planetary gears, excellent fuel efficiency and driving performances are the key features of the system. This paper analyzes the driving performance of the power-train system of GM-2MT70, which consists of one engine, two electric motors, one simple planetary gear, one double planetary gear, two clutches, and two brakes. The driving performance of the system's steady state is analyzed using performance modeling. The dynamic performance is analyzed using Matlab Simulink.

SIMULATION OF UNIT CELL PERFORMANCE IN THE POLYMER ELECTROLYTE MEMBRANE FUEL CELL

  • Kim, H.G.;Kim, Y.S.;Shu, Z.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.867-872
    • /
    • 2006
  • Fuel cells are devices that convert chemical energy directly into electrical energy. Owing to the high efficiency of the fuel cells, a large number of research work have been done during these years. Among many kinds of the fuel cells, a polymer electrolyte membrane fuel cell is such kind of thing which works under low temperature. Because of the specialty, it stimulated intense global R&D competition. Most of the major world automakers are racing to develop polymer electrolyte membrane fuel cell passenger vehicles. Unfortunately, there are still many problems to be solved in order to make them into the commercial use, such as the thermal and water management in working process of PEMFCs. To solve the difficulites facing the researcher, the analysis of the inner mechanism of PEMFC should be implemented as much as possible and mathematical modeling is an important tool for the research of the fuel cell especially with the combination of experiment. By regarding some of the assumptions and simplifications, using the finite element technique, a two-dimensional electrochemical mode is presented in this paper for the further comparison with experimental data. Based on the principals of the problem, the equations of electronic charge conservation equation, gas-phase continuity equation, and mass balance equation are used in calculating. Finally, modeling results indicate some of the phenomenon in a unit cell, and the relationships between potential and current density.

Performance Analysis and Emission Characteristics of a Bi-fuel Using Spark Ignition Engine

  • Mahmud, Md. Iqbal;Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.351-359
    • /
    • 2010
  • Bi-fuel system in a spark ignition engine (SIE) is a rising phenomena in today's automobile technology. In a gasoline driven vehicle, alternatively adoption of compressed natural gas (CNG) could be used as a potential substitute to meet the energy requirement and this is possible by some minor changes in the hardware of the existing engine. Gasoline engine is widely used in the passenger cars, light, medium and heavy duty vehicles but the consumption status of the petroleum is decreasing worldwide and at the same time environmental pollution from automobiles is seriously establishes as a threat for every nation in respect to global warming and climate changes. Now-a-days most vehicles operate using CNG for its popularity stems, clean burning properties and cost effective solution compared to other alternative fuels. It refers as a good gaseous fuel because of its high octane number and self ignition temperature. Though the power output is slightly lesser than the gasoline fuel; its thermal efficiency is better than the gasoline for the same SIE. The research paper highlights the reduction of CO, reasonable outcomes of HC emissions with minor increase in $NO_x$ emissions compared with the gasoline fuel to bi-fuel mode in the SIE that meets the emission challenges.

ROLL AND PITCH ESTIMATION VIA AN ACCELEROMETER ARRAY AND SENSOR NETWORKS

  • Baek, W.;Song, B.;Kim, Y.;Hong, S.K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.753-760
    • /
    • 2007
  • In this paper, a roll and pitch estimation algorithm using a set of accelerometers and wireless sensor networks(S/N) is presented for use in a passenger vehicle. While an inertial measurement unit(IMU) is generally used for roll/pitch estimation, performance may be degraded in the presence of longitudinal acceleration and yaw motion. To compensate for this performance degradation, a new roll and pitch estimation algorithm is proposed that uses an accelerometer array, global positioning system(GPS) and in-vehicle networks to get information from yaw rate and roll rate sensors. Angular acceleration and roll and pitch approximation are first calculated based on vehicle kinematics. A discrete Kalman filter is then applied to estimate both roll and pitch more precisely by reducing noise from the running engine and from road disturbance. Finally, the feasibility of the proposed algorithm is shown by comparing its performance experimentally with that of an IMU in the framework of an indoor test platform as well as a test vehicle.

The Trend and forecast of Civil Aircraft market (세계 민간 항공기 시장 동향과 전망)

  • Chang, Tae-Jin
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.12-22
    • /
    • 2010
  • The great recession which caused by financial crisis made steep rise of oil price and the serious problems of the aircraft industry. High oil price increases operating cost and the recession decreases air traffic. After a period of high book order and delivery from global economic recovery, the aircraft order fell down suddenly. Also the Aircraft price and lease rate deceased and the MRO market is reduced, too. But, the air cargo and passenger increase again since late of 2009. So, it is difficult to predict the market movement, most of the forecasters agreed that the air traffic and aircraft demand will grow gradually in long term with the growth of emerging markets like China, India and Africa. And more efficient, safe and clean aircraft is needed and will need in the market.

  • PDF

A Study on the Improvement of Vehicle Ride Comfort by Genetic Algorithms (유전자 알고리즘을 이용한 차량 승차감 개선에 관한 연구)

  • 백운태;성활경
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.76-85
    • /
    • 1998
  • Recently, Genetic Algorithm(GA) is widely adopted into a search procedure for structural optimization, which is a stochastic direct search strategy that mimics the process of genetic evolution. This methods consist of three genetics operations maned selection, crossover and mutation. Contrast to traditional optimal design techniques which use design sensitivity analysis results, GA, being zero-order method, is very simple. So, they can be easily applicable to wide area of design optimization problems. Also, owing to multi-point search procedure, they have higher probability of converge to global optimum compared to traditional techniques which take one-point search method. In this study, a method of finding the optimum values of suspension parameters is proposed by using the GA. And vehicle is modelled as planar vehicle having 5 degree-of-freedom. The generalized coordinates are vertical motion of passenger seat, sprung mass and front and rear unsprung mass and rotate(pitch) motion of sprung mass. For rapid converge and precluding local optimum, share function which distribute chromosomes over design bound is introduced. Elitist survival model, remainder stochastic sampling without replacement method, multi-point crossover method are adopted. In the sight of the improvement of ride comfort, good result can be obtained in 5-D.O.F. vehicle model by using GA.

  • PDF

Design and Control Strategy of Fuel Cell Hybrid Power System for Light Electric Railway Vehicles (경전철용 연료전지 하이브리드 동력시스템 설계 및 제어)

  • Kim, Young-Ryul;Park, Young-Won
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.772-777
    • /
    • 2009
  • The development of fuel cell hybrid power system, as a next generation power system to promote clean energy which will mitigate the continued global warming, has demonstratd a significant progress in passenger vehicle applications. Also, in case of railway vehicles in non-electrified railway lines, the adoption of fuel cell hybrid power system is being studied among well-known manufacturers. This paper introduces both the configuration and the control strategy of fuel cell hybrid power system to apply to a light electronic railway vehicle having a repeated driving pattern of acceleration, coasting and deceleration. The simulation results demonstrate the viability of the proposed power system design and its control strategy.

An Experimental Study on the Operating Limit Characteristics of Autonomous Emergency Braking System (긴급제동장치 작동 한계 특성에 대한 실험적 연구)

  • Kim, Jonghyuk;Choi, Jihun;Park, Jungwoo;Park, Jongjin;Park, Hasun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.23-29
    • /
    • 2022
  • Among the various functions of ADAS (Advanced Driver Assistance System), the most important and representative function to the safety of vehicle passengers is AEB (Autonomous Emergency Braking system). In South Korea, laws are in progress from 2022 for making it mandatory for passenger vehicles to be installed. And as AEB-equipped vehicles continues to increase in the future, the demand for accident analysis related to the AEB function is expected to increase in the future. In order to find out the operating limits of AEB, it is necessary to consider the situations exceeding the standards covered by EuroNCAP. Therefore we have performed four experiments in this study, including situations encountered in real-word traffic conditions, i.e., an oblique stop of Global Vehicle Target (GVT) and ADAS sensor failures. These experimental results are expected to be of great help in accurate and reliable accident analysis by considering them when analyzing traffic accidents for ADAS vehicles.

Prospects of Japan's Electronic Vehicle Market: An Analysis Through Toyota Motors' Hybrid Vehicle Deployment (도요타의 하이브리드 자동차 보급 사례 분석을 통한 일본 전기자동차 시장에 대한 전망)

  • Ko, Woo Li;Kim, Kyunghwan
    • Journal of East Asia Management
    • /
    • v.5 no.1
    • /
    • pp.75-90
    • /
    • 2024
  • About 100 years after the start of mass production by American car maker Ford in 1913, the automobile industry has come to a major transformation in 100 years. In this transformation period, automakers are facing the biggest challenge of converting power sources, the basis of automobiles, from existing internal combustion engines to electric vehicles. Hybrid vehicles have been released in Japan since the late 1990s, and changes in automobile power sources have occurred early. In order to gain global leadership in hybrid vehicles, Japanese automakers and the Japanese government joined forces to promote the growth of the domestic hybrid vehicle market. The government has implemented a policy to substantially subsidize the high price of hybrid cars compared to internal combustion engine cars by providing purchase subsidies and tax benefits to buyers. Toyota has increased its line-up of hybrid cars around the Prius and has further strengthened communication with customers for the sale of hybrid vehicles. As a result of continuing these efforts for about 20 years, the percentage of Japan's hybrid vehicle market in 2022 reached 51% for passenger cars. Recently, each country has been setting and promoting aggressive goals for electric vehicles that require a wider range of physical and institutional infrastructure than hybrid vehicles. This study aims to assess the growth of electric vehicles by looking at the trend of hybrid vehicles and how they've been distributed in the Japanese market.

Study on the Temperature Distribution of Cabin under Various Car Heating Modes (난방기 출력에 따른 철도차량 객실 내부 온도 분포 분석)

  • Cho, Youngmin;Yoon, Young-Kwan;Park, Duck-Shin;Kim, Tae-Wook;Kwon, Soon-Bark;Jung, Woo-Sung;Kim, Hee-Man
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.558-565
    • /
    • 2012
  • Abnormal climate or weather is more frequently reported nowadays due to the global climate change. Especially, extremely low temperature in winter season may cause bad thermal discomfort of passengers. In this study, the effect of car heating modes on cabin temperature change and distribution was studied by using a real-scale environmental chamber for passenger cabin. It was found that the cabin temperature rose quickly at the initial stage of heating system operation, but it stopped increasing after certain point. And, temperature was higher when the height from the floor was higher. Based on the obtained result, the way to minimize the decrease of passengers' thermal comfort was suggested.