• 제목/요약/키워드: Global Optima

검색결과 48건 처리시간 0.023초

유전자 알고리즘을 이용한 강 뼈대 구조물의 최적설계 (Optimum Design of Steel Frames Using Genetic Algorithms)

  • 정영식;정석진
    • 한국전산구조공학회논문집
    • /
    • 제13권3호
    • /
    • pp.337-349
    • /
    • 2000
  • 유전자 알고리즘(GA)은 어떠한 유형의 문제에도 적용가능하며 달리 방법이 없는 경우 최후의 수단으로 흔히 사용되는 방법이다. 강구조물 설계란 기본적으로 구조물을 이루는 부재로서 어떤 재료를 선택될 것인지를 결정하는 문제이다. 따라서 천문학적인 숫자의 설계가 존재하며 이들 중 최적의 설계를 탐색하는 것은 대체로 불가능한 일이다. 본 논문에서는 GA와 이와 관련된 여러 가지 기법들을 소개하고 강구조물 최적설계에 이들의 활용을 모색하였다. 작은 설계공간을 가지는 문제에서는 GA로 전역최적설계를 찾을 수 있었다. GA는 또한 연속변수 최적설계 문제에서도 최적설계를 찾았으며 구조물 최적설계에 적용될 수 있음을 보였다. 그러나 규모가 큰 현실문제에서는 GA가 최적 또는 최적에 근접한 설계를 항상 찾을 수 있을 것이라고 기대하기는 어려울 것으로 생각된다. GA에 G bit improvement를 추가하여 수행한 경우에 더 좋은 최적설계 결과를 보여주었으며 앞으로 이 부분의 연구가 활발해 질 것이다.

  • PDF

A new meta-heuristic optimization algorithm using star graph

  • Gharebaghi, Saeed Asil;Kaveh, Ali;Ardalan Asl, Mohammad
    • Smart Structures and Systems
    • /
    • 제20권1호
    • /
    • pp.99-114
    • /
    • 2017
  • In cognitive science, it is illustrated how the collective opinions of a group of individuals answers to questions involving quantity estimation. One example of this approach is introduced in this article as Star Graph (SG) algorithm. This graph describes the details of communication among individuals to share their information and make a new decision. A new labyrinthine network of neighbors is defined in the decision-making process of the algorithm. In order to prevent getting trapped in local optima, the neighboring networks are regenerated in each iteration of the algorithm. In this algorithm, the normal distribution is utilized for a group of agents with the best results (guidance group) to replace the existing infeasible solutions. Here, some new functions are introduced to provide a high convergence for the method. These functions not only increase the local and global search capabilities but also require less computational effort. Various benchmark functions and engineering problems are examined and the results are compared with those of some other algorithms to show the capability and performance of the presented method.

병렬형 랜덤 신호 기반 학습을 이용한 퍼지 제어기의 설계 (Design of a Fuzzy Controller Using the Parallel Architecture of Random Signal-based Learning)

  • 한창욱;오세진
    • 융합신호처리학회논문지
    • /
    • 제12권1호
    • /
    • pp.62-66
    • /
    • 2011
  • 본 논문에서는 퍼지 제어기를 최적화하기 위하여 시뮬레이티드 어닐링(simulated annealing)과 결합한 병렬형 랜덤 신호 기반 학습법을 제안하였다. 랜덤 신호 기반 학습은 직렬 탐색구조로 되어 있어서 지역 탐색 능력은 뛰어나지만 전역 탐색 능력은 부족하다. 이러한 문제점을 극복하기 위하여 다양한 탐색 영역을 가지는 병렬형 랜덤 신호 기반 학습법이 소개 되었으며, 시뮬레이티드 어닐링을 랜덤 신호 기반 학습과 결합하여 학습 능력을 향상시켰다. 제안된 최적화 알고리즘을 도립진자 제어를 위한 퍼지 제어기 설계 최적화에 적용하여 그 유효성을 보였다.

적층배열에 따른 복합재료 쉘의 형상최적화 (Shape Optimization of Laminated Composite Shell for Various Layup Configurations)

  • 김현철;노희열;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.317-324
    • /
    • 2004
  • Shape design optimization of shell structure is implemented on a basis of integrated framework of geometric modeling and finite element analysis which is constructed on the geometrically exact shell theory. This shell theory enables more accurate and robust analysis for complicated shell structures, and it fits for the nature of B-spline function which Is popular modeling scheme in CAD field. Shape of laminated composite shells is optimized through genetic algorithm and sequential linear programming, because there ire numerous optima for various configurations, constraints, and searching paths. Sequential adaptation of global and local optimization makes the process more efficient. Two different optimized results of laminated composite shell structures to minimize strain energy are shown for different layup sequence.

  • PDF

A Proposal of Genetic Algorithms with Function Division Schemes

  • Tsutsui, Shigeyoshi
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.652-658
    • /
    • 1998
  • We introduce the concept of a bi-population scheme for real-coded GAs consisting of an explorer sub-Ga and an exploiter sub-GA. The explorer sub-GA mainly performs global exploration of the search space, and incorporates a restart mechanism to help avoid being trapped at local optima. The exploiter sub-GA performs exploitation of fit local areas of the search space around the neighborhood of the best-so-far solution. Thus the search function of the algorithm is divided. the proposed technique exhibits performance significantly superior to standard GAs on two complex highly multimodal problems.

  • PDF

비대칭 외판원문제에서 Out-of-Kilter호를 이용한 Perturbation (Perturbation Using Out-of-Kilter Arc of the Asymmetric Traveling Salesman Problem)

  • 권상호
    • 한국경영과학회지
    • /
    • 제30권2호
    • /
    • pp.157-167
    • /
    • 2005
  • This paper presents a new perturbation technique for developing efficient iterated local search procedures for the asymmetric traveling salesman problem(ATSP). This perturbation technique uses global information on ATSP instances to speed-up computation and to improve the quality of the tours found by heuristic method. The main idea is to escape from a local optima by introducing perturbations on the out-of-kilter arcs in the problem instance. For a local search heuristic, we use the Kwon which finds optimum or near-optimum solutions by applying the out-of-kilter algorithm to the ATSP. The performance of our algorithm has been tested and compared with known method perturbing on randomly chosen arcs. A number of experiments has been executed both on the well-known TSPLIB instances for which the optimal tour length is known, and on randomly generated Instances. for 27 TSPLIB instances, the presented algorithm has found optimal tours on all instances. And it has effectively found tours near AP lower bound on randomly generated instances.

자기조직화 지도를 위한 베이지안 학습 (Bayesian Learning for Self Organizing Maps)

  • 전성해;전홍석;황진수
    • 응용통계연구
    • /
    • 제15권2호
    • /
    • pp.251-267
    • /
    • 2002
  • Kohonen이 제안한 자기조직화 지도(Self Organizing Maps : SOM)는 매우 빠른 신경망 모형이다. 하지만 다른 신경망 모형과 마찬가지로 학습 결과에 대한 명확한 규칙을 제시하지 못할 뿐만 아니라 지역적 최적값으로 빠지는 경우가 종종 있다. 본 논문에서는 이러한 자기조직화 지도의 모형에 대한 설명력을 부여하고 전역 최적값으로 수렴할 수 있는 예측 성능을 갖는 모형으로서 자율학습 신경망에 베이지안 추론을 결합한 자기조직화 지도를 위한 베이지안 학습(Bayesian Learning for Self Organizing Maps ; BLSOM)을 제안한다. 이 방법은 기존의 자기조직화 지도가 지역적 해에 머물러 있는 것에 비해서 언제든지 전역적 해로 수렴함이 실험을 통하여 밝혀졌다.

유전 이론을 이용한 위성 임무 스케줄링 알고리즘의 제어상수에 따른 적합도 변화 연구 (Fitness Change of Mission Scheduling Algorithm Using Genetic Theory According to the Control Constants)

  • 조겸래;백승우;이대우
    • 제어로봇시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.572-578
    • /
    • 2010
  • In this paper, the final fitness results of the satellite mission scheduling algorithm, which is designed by using the genetic algorithm, are simulated and compared with respect to the control constants. Heuristic algorithms, including the genetic algorithm, are good to find global optima, however, we have to find the optimal control constants before its application to a problem, because the algorithm is strongly effected by the control constants. In this research, the satellite mission scheduling algorithm is simulated with different crossover probability and mutation probability, which is major control constant of the genetic algorithm.

실변수 TABU탐색기법을 이용한 최적조류계산 (Optimal Power Flow Algorithm Using Tabu Search Method With Continuous Variable)

  • 정창우;이명환;신중린;채명석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.197-199
    • /
    • 2001
  • This paper presents a Tabu Search (TS) based algorithm to solve the Optimal Power Flow (OPF) problem, converses rapidly to global optima by means of escaping local minima. In this paper, a new approach based on the random TS algorithm with continuous variable is proposed to find that a solution to the OPF problem within reasonable time complexity. To verify the efficiency of the proposed approach, case studies are made for IEEE 30-bus system.

  • PDF

수직통합 의사결정을 위한 계량분석모형 (A mathematical planning model for vertical integration)

  • 문상원
    • 경영과학
    • /
    • 제10권1호
    • /
    • pp.193-205
    • /
    • 1993
  • This paper presents a mathematical model for a class of vertical integration decisions. The problem structure of interest consists of raw material vendors, components suppliers, components processing plants, final product (assembly) plants and external components buyers. Economic feasibility of operating components plants instead of keeping outside suppliers is our major concern. The model also determines assignment of product lines and production volumes to each open plant considering the cost impacts of economies of scale and plant complexity. The problem formulation leads to a concave, mixed integer mathematical program. Given the state of the art of nonlinear programming techniques, it is often not possible to find global optima for reasonably sized such problems. We developed an optimization solution algorithm within the framework of Benders decomposition for the case of a piecewise linear concave cost function. It is shown that our algorithm generates optimal solutions efficiently.

  • PDF