• Title/Summary/Keyword: Global Method

Search Result 5,460, Processing Time 0.038 seconds

An Enhanced Genetic Algorithm for Global and Local Optimization Search (전역 및 국소 최적화탐색을 위한 향상된 유전 알고리듬의 제안)

  • Kim, Young-Chan;Yang, Bo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1008-1015
    • /
    • 2002
  • This paper proposes a combinatorial method to compute the global and local solutions of optimization problem. The present hybrid algorithm is the synthesis of a genetic algorithm and a local concentrate search algorithm (simplex method). The hybrid algorithm is not only faster than the standard genetic algorithm, but also gives a more accurate solution. In addition, this algorithm can find both the global and local optimum solutions. An optimization result is presented to demonstrate that the proposed approach successfully focuses on the advantages of global and local searches. Three numerical examples are also presented in this paper to compare with conventional methods.

Self-organizing Feature Map for Global Path Planning of Mobile Robot (이동로봇의 전역 경로계획을 위한 Self-organizing Feature Map)

  • Jeong Se-Mi;Cha Young-Youp
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.94-101
    • /
    • 2006
  • A global path planning method using self-organizing feature map which is a method among a number of neural network is presented. The self-organizing feature map uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are moved toward the input vector On the other hand, the modified method in this research uses a predetermined initial weight vectors of 1-dimensional string and 2-dimensional mesh, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are moved toward the input vector. According to simulation results one can conclude that the modified neural network is useful tool for the global path planning problem of a mobile robot.

UAV(Unmanned Aerial Vehicle) image stabilization algorithm based on estimating averaged vehicle motion (기체의 평균 움직임 추정에 기반한 무인항공기 영상 안정화 알고리즘)

  • Lee, Hong-Suk;Ko, Yun-Ho;Kim, Byoung-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.216-218
    • /
    • 2009
  • This paper proposes an image processing algorithm to stabilize shaken scenes of UAV(Unmanned Aerial Vehicle) caused by vehicle self-vibration and aerodynamic disturbance. The proposed method stabilizes images by compensating estimated shake motion which is evaluated from global motion. The global motion between two continuous images modeled by 6 parameter warping model is estimated by non-linear square method based on Gauss-Newton algorithm with excluding outlier region. The shake motion is evaluated by subtracting the global motion from aerial vehicle motion obtained by averaging global motion. Experimental results show that the proposed method stabilize shaken scenes effectively.

  • PDF

A Global Optimization Technique for the Capacitor Placement in Distribution Systems (배전계통 커패시터 설치를 위한 전역적 최적화 기법)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;Lee, Sang-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.748-754
    • /
    • 2008
  • The general capacitor placement problem is a combinatorial optimization problem having an objective function composed of power losses and capacitor installation costs subject to bus voltage constraints. In this paper, a global optimization technique, which employing the chaos search algorithm, is applied to solve optimal capacitor placement problem with reducing computational effort and enhancing global optimality of the solution. Chaos method in optimization problem searches the global optimal solution on the regularity of chaotic motions and easily escapes from local or near optimal solution than stochastic optimization algorithms. The chaos optimization method is tested on 9 buses and 69 buses system to illustrate the effectiveness of the proposed method.

Single Image Depth Estimation With Integration of Parametric Learning and Non-Parametric Sampling

  • Jung, Hyungjoo;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1659-1668
    • /
    • 2016
  • Understanding 3D structure of scenes is of a great interest in various vision-related tasks. In this paper, we present a unified approach for estimating depth from a single monocular image. The key idea of our approach is to take advantages both of parametric learning and non-parametric sampling method. Using a parametric convolutional network, our approach learns the relation of various monocular cues, which make a coarse global prediction. We also leverage the local prediction to refine the global prediction. It is practically estimated in a non-parametric framework. The integration of local and global predictions is accomplished by concatenating the feature maps of the global prediction with those from local ones. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods both qualitatively and quantitatively.

A study on the adaptive query conversion using TMDR-based global query (TMDR 기반의 글로벌 쿼리를 이용한 적응적 쿼리 변환에 관한 연구)

  • Hwang, Chi-Gon;Shin, Hyo-Young;Jung, Kye-Dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.966-969
    • /
    • 2012
  • This study suggests a query conversion method based on Topic Maps MetaData Registry(TMDR) in order to solve heterogeneity problems distributed in networks and to integrate data efficiently. In order to integrate distributed data, TMDR provides global schema and it solves heterogeneity problem within local data using query conversion method. After analyzing relationship between Meta Schema Ontology(MSO) of eXtended Meta Data Registry(XMDR) and Topic Maps, this method allows integrated access through Meta Location(ML) which manages accessing information of local data. The processing method is to produce a global query for global processing by using TMDR and then to make the produced global query approach to systems distributed through networks so that allows integrated access at the end. For this, we propose a method to convert a global query into a query which is adaptive to local query.

  • PDF

Scene-based Nonuniformity Correction Complemented by Block Reweighting and Global Offset Initialization

  • Hong, Yong-hee;Lee, Keun-Jae;Kim, Hong-Rak;Jhee, Ho-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.8
    • /
    • pp.15-23
    • /
    • 2017
  • In this paper, the block reweighting and global offset initialization methods are proposed to complement the improved IRLMS algorithm which is the effective algorithm in registration based SBNUC algorithm. Proposed block weighting method reweights the error map whose abnormal data are excluded. The global offset initialization method compensates the global nonuniformity initially. The ordinary registration based SBNUC algorithm is hard to compensate global nonuniformity because of low scene motion. We employ the proposed methods to improved IRLMS algorithm, and apply it to real-world infrared raw image stream. The result shows that new implementation provides 3.5~4.0dB higher PSNR and convergence speed 1.5 faster then the improved IRLMS algorithm.

Object Recognition-based Global Localization for Mobile Robots (이동로봇의 물체인식 기반 전역적 자기위치 추정)

  • Park, Soon-Yyong;Park, Mignon;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 2008
  • Based on object recognition technology, we present a new global localization method for robot navigation. For doing this, we model any indoor environment using the following visual cues with a stereo camera; view-based image features for object recognition and those 3D positions for object pose estimation. Also, we use the depth information at the horizontal centerline in image where optical axis passes through, which is similar to the data of the 2D laser range finder. Therefore, we can build a hybrid local node for a topological map that is composed of an indoor environment metric map and an object location map. Based on such modeling, we suggest a coarse-to-fine strategy for estimating the global localization of a mobile robot. The coarse pose is obtained by means of object recognition and SVD based least-squares fitting, and then its refined pose is estimated with a particle filtering algorithm. With real experiments, we show that the proposed method can be an effective vision- based global localization algorithm.

  • PDF

A Comparative Study of Subsea Pipeline Global Buckling Control Method (해저 파이프라인의 전체 좌굴 제어 방법 비교)

  • Kim, Koo;Kim, Do-Kyun;Choi, Han-Suk;Park, Kyu-Sik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • Global buckling is a bending of pipeline and it occurs when the stability of pipeline is distributed by excessive axial force. Subesea pipeline is subjected to axial force induced by temperature and pressure from well and resulting phenomena should be controlled in appropriate manner. Global buckling of subsea pipeline is still ongoing research subject and is studied various organization. In this study, various control methods such as buoyancy module, sleeper, and snake lay for global buckling of subsea pipeline were numerically investigated with various design parameters. From the numerical simulation results, the global buckling control method using sleepers shows better results than buoyancy module and snake lay control methods in the sense of combined stress after buckling. Furthermore, the global buckling of full scale pipeline of 80km with uneven seabed profile were successfully managed when the sleeper was installed.

Beam and Diffuse to Global Solar Irradiation Correlation Coefficients for Daejeon (대전지역 직달 및 산란과 전일사 상관계수)

  • Lee, Kwan-Ho;Song, Doo-Sam
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.11-24
    • /
    • 2019
  • The total solar irradiation on horizontal surfaces is separated into the beam and diffuses components. Although horizontal global irradiance is a commonly measured parameter for many sites, horizontal diffuse irradiance is not so readily obtainable. For such sites that measure global irradiation alone, a simple but reasonably accurate method is required to estimate diffuse irradiance from its global counterpart. This study investigates the applicability of correlation coefficients models correlating hourly diffuse and beam fraction and hourly clearness index in Daejeon. The three diffuse to global correlation coefficients models (Orgill and Holland model, CIBSE Guide J model, and Erbs et al. model) are selected and the three modified beam to global correlation coefficients models are generated. MBE, RMSE, r-squared of Daejeon and Daejeon boundary site-fitted models are compared with the case of original coefficients. The comparison result shows that the beam and diffuse to global solar irradiation correlation coefficients models with boundary site-fitted coefficients are best suitable for Daejeon. Further researches will be conducted to find the boundary site-fitting method using measured data of other cities and correlation coefficients models using solar altitude, cloud cover, and sunshine duration.