• Title/Summary/Keyword: Global Deflection

Search Result 69, Processing Time 0.029 seconds

Direct Strength Assessment of Pure Car and Truck Carrier under Maximum Cargo Loads (최대 화물 적재하중을 받는 자동차운반선의 직접강도평가)

  • Kim, Tae-Yeob;Yoon, Sung-Won;Cho, Je-Hyoung;Jung, Seung-Ho;Kim, Myung-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.641-647
    • /
    • 2019
  • Yearly world vehicle production has continued to increase, and the global seaborne trade volumes also are recovering. Based on these positive trends, as demand for cargo ships increases in the freight transportation market, Pure car and truck carriers (PCTCs) with large gaps between decks continue to be ordered. The structural analysis of the cargo hold was performed in order to confirm its structural safety in accordance with the guidance for the direct strength assessment of the Korean Register (KR) of Shipping. And, according to the type of cargo, the maximum deflection and structurally weak area that occurred in deck 5 was confirmed. Also, it was found that the weight of the cargo had a significant effect on the deck, the primary members of the deck's structure, and pillars. The results of the structural analysis conducted in this study were added to the existing cargo load planning software. This was done so that the prediction of the maximum stress and the deflection of the deck based on the information about the cargo could be confirmed quickly. In addition, the data will be used as the basic data for rapid information management response to changes in cargo items.

Aerodynamic control capability of a wing-flap in hypersonic, rarefied regime: Part II

  • Zuppardi, Gennaro;Vangone, Daniele
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.503-514
    • /
    • 2017
  • The attitude control of an aircraft is usually fulfilled by means of thrusters at high altitudes. Therefore, the possibility of using also aerodynamic surfaces would produce the advantage of reducing the amount of fuel for the thrusters to be loaded on board. For this purpose, Zuppardi already considered some aerodynamic problems linked to the use of a wing flap in a previous paper. A NACA 0010 airfoil with a trailing edge flap of 35% of the chord, in the range of angle of attack 0-40 deg and flap deflections up to 30 deg was investigated. Computer tests were carried out in hypersonic, rarefied flow by a direct simulation Monte Carlo code at the altitudes of 65 and 85 km of Earth Atmosphere. The present work continues this subject, considering the same airfoil and free stream conditions but two flap extensions of 45% and 25% of the chord and two flap deflections of 15 and 30 deg. The main purpose is to compare the influence of the flap dimension with that of the flap deflection. The present analysis is carried out in terms of: 1) percentage variation of the global aerodynamic coefficients with respect to the no-flap configuration, 2) increment of pressure and heat flux on the airfoil lower surface due to the Shock Wave-Shock Wave Interaction (SWSWI) with respect to the same quantities with no SWSWI or in no-flap configuration, 3) flap hinge moment. Issues 2) and 3) are important for the design of the mechanical and thermal protection system and of the flap actuator, respectively. Under the above mentioned test and geometrical conditions, the flap deflection is aerodynamically more effective than the flap extension, because it involves higher variation of the aerodynamic coefficients. However, tests verify that a smaller deflection angle involves the advantage of a smaller increment of pressure and heat flux on the airfoil lower surface, due to SWSWI, as well as a smaller hinge moment.

Evaluation of Reinforcing Performance of Window Protection Device Against Strong Wind (강풍에 대비한 창호보호장치의 보강성능 평가)

  • Park, Won Bin;Kim, Hong Jin
    • Journal of the wind engineering institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.155-161
    • /
    • 2018
  • In modern society, damage caused by strong winds such as typhoons is expected to increase due to urbanization and global warming. In order to test the reinforcement performance of the newly developed window protection device, two-point force test and uniformly distributed load test were carried out on non-reinforced plate glass. It reinforcement performance of the window protection device was evaluated based on the flexural performance improvement. The analytical performance of the window protection device was evaluated by analysis using differential equations of elastic loading method and deflection curve and Midas-Gen. First, the analytical window protection device was evaluated by formulae derived using differential equations of elastic loading and deflection curve. The validity of the derived formulae investigated by comparing the maximum deflection of the central part of the plate with the experimental value and the theoretical value at maximum load. Then the results were compared with those by finite element FE method using Midas-Gen. Under the experimental conditions, with the window protection device, stress reduction effect up to 40% and deflection reduction up to 71.4% under the same load were obtained. It was also found that it is advantageous to perform the FE analysis using the plate element when the performance is evaluated because the error of FE analysis result using plate elements is far less than that using beam elements.

Bicriteria optimal design of open cross sections of cold-formed thin-walled beams

  • Ostwald, M.;Magnucki, K.;Rodak, M.
    • Steel and Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.53-70
    • /
    • 2007
  • This paper presents a analysis of the problem of optimal design of the beams with two I-type cross section shapes. These types of beams are simply supported and subject to pure bending. The strength and stability conditions were formulated and analytically solved in the form of mathematical equations. Both global and selected types of local stability forms were taken into account. The optimization problem was defined as bicriteria. The cross section area of the beam is the first objective function, while the deflection of the beam is the second. The geometric parameters of cross section were selected as the design variables. The set of constraints includes global and local stability conditions, the strength condition, and technological and constructional requirements in the form of geometric relations. The optimization problem was formulated and solved with the help of the Pareto concept of optimality. During the numerical calculations a set of optimal compromise solutions was generated. The numerical procedures include discrete and continuous sets of the design variables. Results of numerical analysis are presented in the form of tables, cross section outlines and diagrams. Results are discussed at the end of the work. These results may be useful for designers in optimal designing of thin-walled beams, increasing information required in the decision-making procedure.

Seismic performance evaluation of coupled core walls with concrete and steel coupling beams

  • Fortney, Patrick J.;Shahrooz, Bahram M.;Rassati, Gian A.
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.279-301
    • /
    • 2007
  • When coupling beams are proportioned appropriately in coupled core wall (CCW) systems, the input energy from ground motions is dissipated primarily through inelastic deformations in plastic hinge regions at the ends of the coupling beams. It is desirable that the plastic hinges form at the beam ends while the base wall piers remain elastic. The strength and stiffness of the coupling beams are, therefore, crucial if the desired global behavior of the CCW system is to be achieved. This paper presents the results of nonlinear response history analysis of two 20-story CCW buildings. Both buildings have the same geometric dimensions, and the components of the buildings are designed based on the equivalent lateral force procedure. However, one building is fitted with steel coupling beams while the other is fitted with diagonally reinforced concrete coupling beams. The force-deflection relationships of both beams are based on experimental data, while the moment-curvature and axial load-moment relationships of the wall piers are analytically generated from cross-sectional fiber analyses. Using the aforementioned beam and wall properties, nonlinear response history analyses are performed. Superiority of the steel coupling beams is demonstrated through detailed evaluations of local and global responses computed for a number of recorded and artificially generated ground motions.

Inelastic stability analysis of high strength rectangular concrete-filled steel tubular slender beam-columns

  • Patel, Vipulkumar Ishavarbhai;Liang, Qing Quan;Hadi, Muhammad N.S.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.2
    • /
    • pp.91-104
    • /
    • 2012
  • There is relatively little numerical study on the behavior of eccentrically loaded high strength rectangular concrete-filled steel tubular (CFST) slender beam-columns with large depth-to-thickness ratios, which may undergo local and global buckling. This paper presents a multiscale numerical model for simulating the interaction local and global buckling behavior of high strength thin-walled rectangular CFST slender beam-columns under eccentric loading. The effects of progressive local buckling are taken into account in the mesoscale model based on fiber element formulations. Computational algorithms based on the M$\ddot{u}$ller's method are developed to obtain complete load-deflection responses of CFST slender beam-columns at the macroscale level. Performance indices are proposed to quantify the performance of CFST slender beam-columns. The accuracy of the multiscale numerical model is examined by comparisons of computer solutions with existing experimental results. The numerical model is utilized to investigate the effects of concrete compressive strength, depth-to-thickness ratio, loading eccentricity ratio and column slenderness ratio on the performance indices. The multiscale numerical model is shown to be accurate and efficient for predicting the interaction buckling behavior of high strength thin-walled CFST slender beam-columns.

Influence of lateral motion of cable stays on cable-stayed bridges

  • Wang, P.H.;Liu, M.Y.;Huang, Y.T.;Lin, L.C.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.719-738
    • /
    • 2010
  • The aim of this paper concerns with the nonlinear analysis of cable-stayed bridges including the vibration effect of cable stays. Two models for the cable stay system are built up in the study. One is the OECS (one element cable system) model in which one single element per cable stay is used and the other is MECS (multi-elements cable system) model, where multi-elements per cable stay are used. A finite element computation procedure has been set up for the nonlinear analysis of such kind of structures. For shape finding of the cable-stayed bridge with MECS model, an efficient computation procedure is presented by using the two-loop iteration method (equilibrium iteration and shape iteration) with help of the catenary function method to discretize each single cable stay. After the convergent initial shape of the bridge is found, further analysis can then be performed. The structural behaviors of cable-stayed bridges influenced by the cable lateral motion will be examined here detailedly, such as the static deflection, the natural frequencies and modes, and the dynamic responses induced by seismic loading. The results show that the MECS model offers the real shape of cable stays in the initial shape, and all the natural frequencies and modes of the bridge including global modes and local modes. The global mode of the bridge consists of coupled girder, tower and cable stays motion and is a coupled mode, while the local mode exhibits only the motion of cable stays and is uncoupled with girder and tower. The OECS model can only offers global mode of tower and girder without any motion of cable stays, because each cable stay is represented by a single straight cable (or truss) element. In the nonlinear seismic analysis, only the MECS model can offer the lateral displacement response of cable stays and the axial force variation in cable stays. The responses of towers and girders of the bridge determined by both OECS- and MECS-models have no great difference.

Experimental and numerical studies of mono-strand anchorage

  • Marceau, D.;Bastien, J.;Fafard, M.;Chabert, A.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.119-134
    • /
    • 2001
  • This paper deals with an experimental and numerical study of a mono-strand wedge anchor head mechanism. First, the experimental program is presented and monitored data such as wedge slippage, anchor deflection and strain distributions along external peripheral surfaces of the anchor head are presented and discussed. In accordance with the experimental set up, these data concern only the global behaviour of the mechanism and cannot provide valuable information such as internal stress-strains distributions, stress concentrations and percentage of yielded volume. Therefore, the second part of this paper deals with the development of an efficient numerical finite element model capable of providing mechanism of the core information. The numerical model which includes all kinematics/material/contact non-linearities is first calibrated using experimental data. Subsequently, a numerical study of the anchorage mechanism is performed and its behaviour is compared to the behaviour of a slightly geometrically modified mechanism where the external diameter has been increased by 5 mm. Finally, different topics influencing the anchorage mechanism behaviour are addressed such as lubrication and wedge shape.

Optimization and sensitivity analysis of the humanoid robot's foot using the design of experiments (실험계획법에 의한 휴머노이드 발의 민감도 해석 및 최적화)

  • Yoon, Ji-Won;Park, Tae-Won;Jung, Sung-Pil;Park, Joong-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.933-938
    • /
    • 2007
  • These days, up-to-date humanoid robots are continuously developed. Among them, Qrio, Asimo[1,2] are famous for its unique walking technology and natural movement. These robots could show manufacturers' technological improvement and leave a good impression to the customer. In accordance with global trends, Samsung is also producing humanoid robot. The humanoid robot, however, could walk like a human compared to the industrial robot fixed in the factory. This feature could cause another dynamic effect while walking. In this paper, the robot's feet were examined to find out parameters that affect stability of the humanoid robot's feet. With the sensitivity analysis, the optimization procedure in design of experiments finds the most suitable performance of robot. Maximum deflection of the frame upon various cases was minimized, and rubber coefficients for shock absorption were optimized.

  • PDF

Modeling of the Axial Movement of Parts During Centerless Through-Feed Grinding

  • Kim, Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1044-1053
    • /
    • 2003
  • There are two major differences between the centerless infeed grinding process and the centerless through-feed grinding process. One is an axial movement of workpieces, and the other is that several workpieces are ground simultaneously and continuously by through-feeding. Because of these differences, through-feed ground parts inherently possess not only the roundness error but also the tapering error. The aims of the research reported in this paper are to examine this inherent tapering characteristic and to find the effects of grinding variables (center height angle, regulating wheel tilt angle, and shape of grinding wheel surface). To accomplish the objectives, experiments were carried out using two types of cylindrical workpiece shapes. Also, computer simulations were performed using the 3-D through-feed grinding model.