• 제목/요약/키워드: Global Climate Model

검색결과 585건 처리시간 0.031초

Future Extreme Temperature and Precipitation Mechanisms over the Korean Peninsula Using a Regional Climate Model Simulation

  • Lee, Hyomee;Moon, Byung-Kwon;Wie, Jieun
    • 한국지구과학회지
    • /
    • 제39권4호
    • /
    • pp.327-341
    • /
    • 2018
  • Extreme temperatures and precipitations are expected to be more frequently occurring due to the ongoing global warming over the Korean Peninsula. However, few studies have analyzed the synoptic weather patterns associated with extreme events in a warming world. Here, the atmospheric patterns related to future extreme events are first analyzed using the HadGEM3-RA regional climate model. Simulations showed that the variability of temperature and precipitation will increase in the future (2051-2100) compared to the present (1981-2005), accompanying the more frequent occurrence of extreme events. Warm advection from East China and lower latitudes, a stagnant anticyclone, and local foehn wind are responsible for the extreme temperature (daily T>$38^{\circ}C$) episodes in Korea. The extreme precipitation cases (>$500mm\;day^{-1}$) were mainly caused by mid-latitude cyclones approaching the Korean Peninsula, along with the enhanced Changma front by supplying water vapor into the East China Sea. These future synoptic-scale features are similar to those of present extreme events. Therefore, our results suggest that, in order to accurately understand future extreme events, we should consider not only the effects of anthropogenic greenhouse gases or aerosol increases, but also small-scale topographic conditions and the internal variations of climate systems.

The Pahlev Reliability Index: A measurement for the resilience of power generation technologies versus climate change

  • Norouzi, Nima
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1658-1663
    • /
    • 2021
  • Research on climate change and global warming on the power generation systems are rapidly increasing because of the Importance of the sustainable energy supply, thus the electricity supply since its growing share, in the end, uses energy supply. However, some researchers conducted this field, but many research gaps are not mentioned and filled in this field's literature since the lack of general statements and the quantitative models and formulation of the issue. In this research, an exergy-based model is implemented to model a set of six power generation technologies (combined cycle, gas turbine, nuclear plant, solar PV, and wind turbine) and use this model to simulate each technology's responses to climate change impacts. Finally, using these responses to define and calculate a formulation for the relationship between the system's energy performance in different environmental situations and a dimensionless index to quantize each power technology's reliability against the climate change impacts called the Pahlev reliability index (P-index) of the power technology. The results have shown that solar and nuclear technologies are the most, and wind turbines are the least reliable power generation technologies.

한반도 지역의 기후변화에 의한 고산·아고산 식생 취약성 평가 (Vulnerability Assessment of Sub-Alpine Vegetations by Climate Change in Korea)

  • 이동근;김재욱
    • 한국환경복원기술학회지
    • /
    • 제10권6호
    • /
    • pp.110-119
    • /
    • 2007
  • This study's objects are to predict distribution and to assess vulnerability of sub-alpine vegetations in the Korean peninsula for climate change using various climate models. This study validates relationship between sub-alpine vegetations and environmental factors using Pearson correlation analysis. Then, the future distribution of sub-alpine vegetations are predicted by a logistic regression. The major findings in this study are; First, spring mean temperature (March-May), total precipitation, elevation and warmth index are highly influencing factors to the distribution of sub-alpine vegetations. Second, the sub-alpine vegetations will be disappeared in South Korea and concentrated around Baekdu Mountain in North Korea. North Korea is predicted to have serious impact of climate change because temperature will be increased higher than in South Korea. The study findings concluded that the assessment of the future vulnerability of sub-alpine vegetations to climate change are significant.

Development of high-resolution atmosphere ocean coupled model and global warming projection with Earth Simulator -A whole research plan and result in FY2002-

  • Maruyama, Koki
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 2003년도 한국해안해양공학발표논문집
    • /
    • pp.18-27
    • /
    • 2003
  • The goal of the UN Framework Convention on Climate Change (UNFCCC) is to stabilize atmospheric CO2 concentration for preventing global warming in future. However, there are many unknown factors regarding stabilization of CO2 concentration. What level of concentration should be appropriate to prevent global warming? When should we stop the increase of CO2 concentration\ulcorner What kind of countermeasures of reducing CO2 emission will be available for CO2 stabilization?(omitted)

  • PDF

국내 주요도시의 일조시간데이터를 이용한 시간당전일사량 산출 및 분석 (Analysis and Calculation of Global Hourly Solar Irradiation Based on Sunshine Duration for Major Cities in Korea)

  • 이관호;심광열
    • 한국태양에너지학회 논문집
    • /
    • 제30권2호
    • /
    • pp.16-21
    • /
    • 2010
  • Computer simulation of buildings and solar energy systems are being used increasingly in energy assessments and design. This paper discusses the possibility of using sunshine duration data instead of global hourly solar irradiation (GHSI) data for localities with abundant data on sunshine duration. For six locations in South Korea where global radiation is currently measured, the global radiation was calculated using Sunshine Duration Radiation Model (SDRM), compared and analyzed. Results of SDRM has been compared with the measured data on the coefficients of determination (R2), root-mean-square error (RMSE) and mean bias error (MBE). This study recommends the use of sunshine duration based irradiation models if measured solar radiation data is not available.

표준기상데이터 작성을 위한 국내 기후특성을 고려한 일사량 예측 모델 적합성 평가 (Applicability of the Solar Irradiation Model in Preparation of Typical Weather Data Considering Domestic Climate Conditions)

  • 심지수;송두삼
    • 설비공학논문집
    • /
    • 제28권12호
    • /
    • pp.467-476
    • /
    • 2016
  • As the energy saving issues become one of the important global agenda, the building simulation method is generally used to predict the inside energy usage to establish the power-saving strategies. To foretell an accurate energy usage of a building, proper and typical weather data are needed. For this reason, typical weather data are fundamental in building energy simulations and among the meteorological factors, the solar irradiation is the most important element. Therefore, preparing solar irradiation is a basic factor. However, there are few places where the horizontal solar radiation in domestic weather stations can be measured, so the prediction of the solar radiation is needed to arrive at typical weather data. In this paper, four solar radiation prediction models were analyzed in terms of their applicability for domestic weather conditions. A total of 12 regions were analyzed to compare the differences of solar irradiation between measurements and the prediction results. The applicability of the solar irradiation prediction model for a certain region was determined by the comparisons. The results were that the Zhang and Huang model showed the highest accuracy (Rad 0.87~0.80) in most of the analyzed regions. The Kasten model which utilizes a simple regression equation exhibited the second-highest accuracy. The Angstrom-Prescott model is easily used, also by employing a plain regression equation Lastly, the Winslow model which is known for predicting global horizontal solar irradiation at any climate regions uses a daily integration equation and showed a low accuracy regarding the domestic climate conditions in Korea.

CLIMATE CHANGE IMPACT OVER INDIAN AGRICULTURE - A SPATIAL MODELING APPROACH

  • Priya, Satya;Shibasaki, Ryosuke
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.107-114
    • /
    • 1999
  • The large-scale distribution of crops Is usually determined by climate. We present the results of a climate-crop prediction based on spatial bio-physical process model approach, implemented in a GIS (Geographic Information System) environment using several regional and global agriculture-environmental databases. The model utilizes daily climate data like temperature, rainfall, solar radiation being generated stocastically by in-built model weather generator to determine the daily biomass and finally the crop yield. Crops are characterized by their specific growing period requirements, photosynthesis, respiration properties and harvesting index properties. Temperature and radiation during the growing period controls the development of each crop. The model simulates geographic/spatial distribution of climate by which a crop-growing belt can also be determined. The model takes both irrigated and non-irrigated area crop productivity into account and the potential increase in productivity by the technical means like mechanization is not considered. All the management input given at the base year 1995 was kept same for the next twenty-year changes until 2015. The simulated distributions of crops under current climatic conditions coincide largely with the current agricultural or specific crop growing regions. Simulation with assumed weather generated derived climate change scenario illustrate changes in the agricultural potential. There are large regional differences in the response across the country. The north-south and east-west regions responded differently with projected climate changes with increased and decreased productivity depending upon the crops and scenarios separately. When water was limiting or facilitating as non-irrigated and irrigated area crop-production effects of temperature rise and higher $CO_2$ levels were different depending on the crops and accordingly their production. Rise in temperature led to yield reduction in case of maize and rice whereas a gain was observed for wheat crop, doubled $CO_2$ concentration enhanced yield for all crops and their several combinations behaved differently with increase or decrease in yields. Finally, with this spatial modeling approach we succeeded in quantifying the crop productivity which may bring regional disparities under the different climatic scenarios where one region may become better off and the other may go worse off.

  • PDF

유효가뭄지수(EDI)를 이용한 한반도 미래 가뭄 특성 전망 (Projection of Future Changes in Drought Characteristics in Korea Peninsula Using Effective Drought Index)

  • 곽용석;조재필;정임국;김도우;장상민
    • 한국기후변화학회지
    • /
    • 제9권1호
    • /
    • pp.31-45
    • /
    • 2018
  • This study implemented the prediction of drought properties (number of drought events, intensity, duration) using the user-oriented systematical procedures of downscaling climate change scenarios based the multiple global climate models (GCMs), AIMS (APCC Integrated Modeling Solution) program. The drought properties were defined and estimated with Effective Drought Index (EDI). The optimal 10 models among 29 GCMs were selected, by the estimation of the spatial and temporal reproducibility about the five climate change indices related with precipitation. In addition, Simple Quantile Mapping (SQM) as the downscaling technique is much better in describing the observed precipitation events than Spatial Disaggregation Quantile Delta Mapping (SDQDM). Even though the procedure was systematically applied, there are still limitations in describing the observed spatial precipitation properties well due to the offset of spatial variability in multi-model ensemble (MME) analysis. As a result, the farther into the future, the duration and the number of drought generation will be decreased, while the intensity of drought will be increased. Regionally, the drought at the central regions of the Korean Peninsula is expected to be mitigated, while that at the southern regions are expected to be severe.

토지이용균형모델을 이용한 기후변화에 따른 제주도 지역의 주거용 토지이용변화와 인구 밀도 예측 (Analyzing Residential Land Use Change and Population Density Considering Climate Change Using Land Use Equilibrium Model in Jeju)

  • 유소민;이우균;야마가타 요시키;임철희;송철호;최현아
    • 한국지리정보학회지
    • /
    • 제18권4호
    • /
    • pp.43-58
    • /
    • 2015
  • 급격한 경제 성장과 인구 증가는 온실가스 배출량을 급증시키고 있으며 이는 기후변화를 가속화시키고 있다. IPCC(Intergovernmental Panel on Climate Change) 보고서는 온실가스가 2000년부터 2030년까지 최대 90%까지 증가할 것이라고 보고하고 있다. 이에 전 세계에서는 기후변화에 대한 피해를 줄이기 위해 기후변화 적응과 완화 대책 수립이 중요시되고 있으며, 우리나라에는 기후변화 대응 정책으로'저탄소 녹색성장(Low Carbon Green Growth)'을 시행하였다. 지자체에서는 친환경적이며 지속가능한 발전을 위한 도시계획을 조성하기 위해 다양한 연구를 수행해왔다. 특히, 기후변화에 가장 크게 영향을 줄 수 있는 토지이용변화에 대한 연구가 활발하게 수행되어지고 있는 실정이다. 본 연구에서는 제주도를 대상으로 경제적, 지리적 특성을 기반한 토지이용 균형 모델을 적용하여 주거 토지이용변화와 인구 밀도를 예측하였다. 먼저, 주거부분의 토지이용변화를 보기 위해, 3가지 유형의 시나리오를 구축하였다. 시나리오는 현재와 동일한 환경을 갖는 Dispersion 시나리오, 기후변화 적응 대책을 반영한 Adaptation 시나리오, 기후변화 적응과 완화 대책을 동시에 반영한 Combined 시나리오이다. 그 결과, 전반적으로 Dispersion 시나리오에서 Combined 시나리오로 갈수록 주거면적과 인구밀도가 줄어들었다. 이후 주거면적과 인구밀도 결과를 통해 시나리오별 주거용 에너지 소비량과 예상 인명 피해액을 산정하였다. 그 결과, 전반적으로 Dispersion 시나리오에서 Combined 시나리오로 갈수록 에너지 소비량과 예상 인명 피해액은 줄어들었다. 본 연구에서 제시한 토지이용균형모델을 적용하여 시나리오별 주거부분 토지이용과 인구 밀도 변화 파악은 향후 기후변화 안정성을 확보하고 완화할 수 있는 환경적 도시계획을 수립하는데 도움을 줄 수 있을 것으로 기대된다.

SENSITIVITY OF THE KEUM RIVER BASIN TO CLIMATE CHANGE

  • Kim, Young-Oh;Seo, Yong-Won;Lee, Seung-Hyun;Lee, Dong-Ryul
    • Water Engineering Research
    • /
    • 제1권4호
    • /
    • pp.267-277
    • /
    • 2000
  • This study reports an examination of the sensitivity of water resources in the Keum River basin to climate change. Assuming a doubling in $CO_2$ concentrations, a cooperative study provided four climate change scenarios for this study, which have been translated into temperature and precipitation scenarios on a basin scale. The study utilized these temperature and precipitation data for each climate change scenario as inputs to the NWS-PC model to generate the corresponding streamflow scenario over the Keum River basin. A reservoir simulation model for the Dae-Chung Dam in the Keum River basin has been developed with an object-oriented simulation environment, STELLA. For each streamflow scenario, the performance of the reservoir was assessed in terms of reliability, resiliency, and vulnerability. Although the simulation results are heavily dependent on the choice of the climate change scenarios, the following conclusions can be clearly concluded: (1) the future streamflow over the Dae-Chung Dam tends to decease during the dry period, which seriously increases competitive water use issues and (2) flood control issues predominate under the $2CO_2$-High case.

  • PDF