• Title/Summary/Keyword: Glioblastoma

Search Result 223, Processing Time 0.033 seconds

MicroRNA-203 As a Stemness Inhibitor of Glioblastoma Stem Cells

  • Deng, Yifan;Zhu, Gang;Luo, Honghai;Zhao, Shiguang
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.619-624
    • /
    • 2016
  • Glioblastoma stem cells (GBM-SCs) are believed to be a subpopulation within all glioblastoma (GBM) cells that are in large part responsible for tumor growth and the high grade of therapeutic resistance that is so characteristic of GBM. MicroRNAs (miR) have been implicated in regulating the expression of oncogenes and tumor suppressor genes in cancer stem cells, including GBM-SCs, and they are a potential target for cancer therapy. In the current study, miR-203 expression was reduced in $CD133^+$ GBM-SCs derived from six human GBM biopsies. MicroRNA-203 transfected GBM-SCs had reduced capacity for self-renewal in the cell sphere assay and increased expression of glial and neuronal differentiation markers. In addition, a reduced proliferation rate and an increased rate of apoptosis were observed. Therefore, miR-203 has the potential to reduce features of stemness, specifically in GBM-SCs, and is a logical target for GBM gene therapy.

Glioblastoma Multiforme with Subcutaneous Metastases, Case Report and Literature Review

  • Guo, Liemei;Qiu, Yongming;Ge, Jianwei;Zhou, Dongxue
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.5
    • /
    • pp.484-487
    • /
    • 2012
  • Glioblastoma multiforme (GBM) is the most common primary brain tumor and the most malignant astrocytoma in adults, with rare extra-cranial metastases, especially for subcutaneous metastases. It could be easily misdiagnosed as primary subcutaneous tumor. In this report, we describe a patient with pontine GBM who developed a subcutaneous swelling at the ipsilateral posterior cervical region 8 months after operation, and the pathological and immunocytochemical examination carry the same characteristics as the primary intracranial GBM cells, which defined it as subcutaneous metastasis. GBM with subcutaneous metastasis is extremely rare, and knowledge of a prior intracranial GBM, pathological examinations and immunocytochemical tests with markers typically expressed by GBM are of vital importance for the diagnosis of GBM metastasis. Surgical resection of subcutaneous swelling, followed by chemotherapy and radiotherapy, could be the best strategy of treatment for the patients with GBM subcutaneous metastasis.

$De$ $Novo$ Aneurysm after Treatment of Glioblastoma

  • Yoon, Wan-Soo;Lee, Kwan-Sung;Jeun, Sin-Soo;Hong, Yong-Kil
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.5
    • /
    • pp.457-459
    • /
    • 2011
  • A rare case of spontaneous subarachnoid hemorrhage from newly developed cerebral aneurysm in glioblastoma patient is presented. A 57-year-old man was presented with headache and memory impairment. On the magnetic resonance image and the magnetic resonance angiography, a large enhancing mass was found at right frontal subcortex and intracranial aneurysm was not found. The mass was removed subtotally and revealed as glioblastoma. He took concurrent PCV chemotherapy and radiation therapy, but the mass recurred one month later after radiotherapy. He was then treated with temozolomide for 7 cycles. Three months after the completion of temozolomide therapy, he suffered from a subarachnoid hemorrhage due to a rupture of a small de novo aneurysm at distal anterior cerebral artery. He underwent an aneurysm clipping and discharged without neurologic complication.

Ceramide Induces Apoptosis and Growth Arrest of Human Glioblastoma Cells by Inhibiting Akt Signaling Pathways

  • Lee, Eun-Chang;Lee, Young-Seok;Park, Na-Hee;So, Kwang-Sup;Chun, Young-Jin;Kim, Mie-Young
    • Biomolecules & Therapeutics
    • /
    • v.19 no.1
    • /
    • pp.21-26
    • /
    • 2011
  • Ceramide is an important lipid mediator of extracellular signals that control various cellular functions, including apoptosis. In this study, we showed that ceramide induced apoptosis in U373MG human glioblastoma cells associated with G1 cell cycle arrest. Treatment of cells with ceramide increased proapoptotic Bax expression and inhibited the expression of antiapoptotic Bcl-2 and Bcl-xL Ceramide also downregulated cyclin E, cyclin D1, cdk 2, and cdk4 which are involved in regulating cell cycle. In addition, ceramide suppressed phosphorylation of Akt, Bad, p70 S6 kinase, and 4E-BP1, suggesting the involvement of Akt/mTOR signaling pathway. Additionally, okadaic acid, an inhibitor of protein phosphatase 2A, partially blocked the ceramide mediated inhibition of phosphorylation of Akt and 4E-BP1. These results suggest that ceramide induces apoptosis in U373MG glioblastoma cells by regulating multiple signaling pathways that involve cell cycle arrest associated with Akt signaling pathway.

Apoptosis Induced by Cisplatin in Human Glioblastoma A172 Cells (사람 교모세포종 A172 세포에서 Cisplatin에 의한 세포고사의 유도)

  • Kim, Dae Won;Kim, Tae Young;Park, Jong Tae;Kim, Jong Moon
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.sup1
    • /
    • pp.5-12
    • /
    • 2001
  • This study was designed to investigate the mechanism of cell death after cisplatin treatment in human glioblastoma A172 cells. Cis-diamminedichloroplatinum(Cisplatin) demonstrated cytostatic or cytotoxic effects on A172 cells in a dosedependent manner. Cisplatin-mediated cytotoxity in A172 cells was revealed as an apoptosis characterized by high molecular weight DNA fragmentation by agarose electrophoresis as well as nuclear fragmentation by Hoechst staining. Cisplatin also resulted in the activation of caspase 3-like protease as well as poly(ADP-ribose) polymerase(PARP) cleavage. Interestingly, the anti-apoptotic Bcl2 protein was degraded and furthermore, expression of p53 protein was increased by cisplatin in a time-dependent manner. Taken together, these results suggest that anticancer drug, cisplatin induces the apoptotic death of human glioblastoma A172 cells via the activations of caspase 3-like protease, degradation of anti-apoptotic Bcl2 protein and increase in the expression of p53.

  • PDF

Decursin induces apoptosis in glioblastoma cells, but not in glial cells via a mitochondria-related caspase pathway

  • Oh, Seung Tack;Lee, Seongmi;Hua, Cai;Koo, Byung-Soo;Pak, Sok Cheon;Kim, Dong-Il;Jeon, Songhee;Shin, Boo Ahn
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • Decursin is a major biological active component of Angelica gigas Nakai and is known to induce apoptosis of metastatic prostatic cancer cells. Recently, other reports have been commissioned to examine the anticancer activities of this plant. In this study, we evaluated the inhibitory activity and related mechanism of action of decursin against glioblastoma cell line. Decursin demonstrated cytotoxic effects on U87 and C6 glioma cells in a dose-dependent manner but not in primary glial cells. Additionally, decursin increased apoptotic bodies and phosphorylated JNK and p38 in U87 cells. Decursin also down-regulated Bcl-2 as well as cell cycle dependent proteins, CDK-4 and cyclin D1. Furthermore, decursin-induced apoptosis was dependent on the caspase activation in U87 cells. Taken together, our data provide the evidence that decursin induces apoptosis in glioblastoma cells, making it a potential candidate as a chemotherapeutic drug against brain tumor.

Curcumin-Induced Autophagy Augments Its Antitumor Effect against A172 Human Glioblastoma Cells

  • Lee, Jong-Eun;Yoon, Sung Sik;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • v.27 no.5
    • /
    • pp.484-491
    • /
    • 2019
  • Glioblastoma is the most aggressive common brain tumor in adults. Curcumin, from Curcuma longa, is an effective antitumor agent. Although the same proteins control both autophagy and cell death, the molecular connections between them are complicated and autophagy may promote or inhibit cell death. We investigated whether curcumin affects autophagy, which regulates curcumin-mediated tumor cell death in A172 human glioblastoma cells. When A172 cells were incubated with $10{\mu}M$ curcumin, autophagy increased in a time-dependent manner. Curcumin-induced cell death was reduced by co-incubation with the autophagy inhibitors 3-methyladenine (3-MA), hydroxychloroquine (HCQ), and LY294002. Curcumin-induced cell death was also inhibited by co-incubation with rapamycin, an autophagy inducer. When cells were incubated under serum-deprived medium, LC3-II amount was increased but the basal level of cell viability was reduced, leading to the inhibition of curcumin-induced cell death. Cell death was decreased by inhibiting curcumin-induced autophagy using small interference RNA (siRNA) of Atg5 or Beclin1. Therefore, curcumin-mediated tumor cell death is promoted by curcumin-induced autophagy, but not by an increase in the basal level of autophagy in rapamycin-treated or serum-deprived conditions. This suggests that the antitumor effects of curcumin are influenced differently by curcumin-induced autophagy and the prerequisite basal level of autophagy in cancer cells.

Expression Profile of Genes Modulated by Aloe emodin in Human U87 Glioblastoma Cells

  • Haris, Khalilah;Ismail, Samhani;Idris, Zamzuri;Abdullah, Jafri Malin;Yusoff, Abdul Aziz Mohamed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4499-4505
    • /
    • 2014
  • Glioblastoma, the most aggressive and malignant form of glioma, appears to be resistant to various chemotherapeutic agents. Hence, approaches have been intensively investigated to targeti specific molecular pathways involved in glioblastoma development and progression. Aloe emodin is believed to modulate the expression of several genes in cancer cells. We aimed to understand the molecular mechanisms underlying the therapeutic effect of Aloe emodin on gene expression profiles in the human U87 glioblastoma cell line utilizing microarray technology. The gene expression analysis revealed that a total of 8,226 gene alterations out of 28,869 genes were detected after treatment with $58.6{\mu}g/ml$ for 24 hours. Out of this total, 34 genes demonstrated statistically significant change (p<0.05) ranging from 1.07 to 1.87 fold. The results revealed that 22 genes were up-regulated and 12 genes were down-regulated in response to Aloe emodin treatment. These genes were then grouped into several clusters based on their biological functions, revealing induction of expression of genes involved in apoptosis (programmed cell death) and tissue remodelling in U87 cells (p<0.01). Several genes with significant changes of the expression level e.g. SHARPIN, BCAP31, FIS1, RAC1 and TGM2 from the apoptotic cluster were confirmed by quantitative real-time PCR (qRT-PCR). These results could serve as guidance for further studies in order to discover molecular targets for the cancer therapy based on Aloe emodin treatment.

Radixin Knockdown by RNA Interference Suppresses Human Glioblastoma Cell Growth in Vitro and in Vivo

  • Qin, Jun-Jie;Wang, Jun-Mei;Du, Jiang;Zeng, Chun;Han, Wu;Li, Zhi-Dong;Xie, Jian;Li, Gui-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9805-9812
    • /
    • 2014
  • Radixin, a member of the ERM (ezrin-radixin-moesin) family, plays important roles in cell motility, invasion and tumor progression. It is expressed in a variety of normal and neoplastic cells, including many types of epithelial and lymphoid examples. However, its function in glioblastomas remains elusive. Thus, in this study, radixin gene expression was first examined in the glioblastoma cells, then suppressed with a lentivirus-mediated short-hairpin RNA (shRNA) method.We found that there were high levels of radixin expression in glioblastoma U251cells. Radixin shRNA caused down-regulation of radixin gene expression and when radixin-silenced cells were implanted into nude mice, tumor growth was significantly inhibited as compared to blank control cells or nonsense shRNA cells. In addition, microvessel density in the tumors was significantly reduced. Thrombospondin-1 (TSP-1) and E-cadherin were up-regulated in radixin- suppressed glioblastoma U251 cells. In contrast, MMP9 was down-regulated. Taken together, our findings suggest that radixin is involved in GBM cell migration and invasion, and implicate TSP-1, E-cadherin and MMP9 as metastasis-inducing factors.

Autophagy Inhibition Promotes Gambogic Acid-induced Suppression of Growth and Apoptosis in Glioblastoma Cells

  • Luo, Guo-Xuan;Cai, Jun;Lin, Jing-Zhi;Luo, Wei-Shi;Luo, Heng-Shan;Jiang, Yu-Yang;Zhang, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6211-6216
    • /
    • 2012
  • Objective: To investigate the effects of gambogic acid (GA) on the growth of human malignant glioma cells. Methods: U251MG and U87MG human glioma cell lines were treated with GA and growth and proliferation were investigated by MTT and colony formation assays. Cell apoptosis was analyzed by annexin V FITC/PI flow cytometry, mitochondrial membrane potential assays and DAPI nuclear staining. Monodansylcadaverine (MDC) staining and GFP-LC3 localisation were used to detect autophagy. Western blotting was used to investigate the molecular changes that occurred in the course of GA treatment. Results: GA treatment significantly suppressed cell proliferation and colony formation, induced apoptosis in U251 and U87MG glioblastoma cells in a time- and dose-dependent manner. GA treatment also lead to the accumulation of monodansylcadaverine (MDC) in autophagic vacuoles, upregulated expressions of Atg5, Beclin 1 and LC3-II, and the increase of punctate fluorescent signals in glioblastoma cells pre-transfected with GFP-tagged LC3 plasmid. After the combination treatment of autophagy inhitors and GA, GA mediated growth inhibition and apoptotic cell death was further potentiated. Conclusion: Our results suggested that autophagic responses play roles as a self-protective mechanism in GA-treated glioblastoma cells, and autophagy inhibition could be a novel adjunctive strategy for enhancing chemotherapeutic effect of GA as an anti-malignant glioma agent.