• Title/Summary/Keyword: Glial

Search Result 385, Processing Time 0.033 seconds

Genomic Organization and Promoter Characterization of the Murine Glial Cell-derived Neurotrophic Factor Inducible Transcription Factor (mGIF) Gene (생쥐 신경교세포 유래 신경영양인자 유도성 전사인자 (mGIF) 유전자의 유전체 구조 및 프로모터 특성 분석)

  • Kim, Ok-Soo;Kim, Yong-Man;Kim, Nam-Young;Lee, Eo-Jin;Jang, Min-Kyung;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.167-173
    • /
    • 2007
  • To study the transcriptional mechanisms by which expression of the murine glial cell-derived neurotrophic factor inducible transcription factor (mGIF) gene is regulated, a murine genomic clone was iso-lated using a mGIF cDNA as probe. A 13-kb genomic fragment, which comprises 4-kb upstream of the transcription initiation site was sequenced. The promoter region lacks a TATA box and CAAT box, is rich in G+C content, and has multiple putative binding sites for the transcription factor Spl. The mGIF gene also has consensus sequences for AP2 binding sites. The transcriptional activity of five deletion mutants of a 2.1-kb fragment was analyzed by modulating transcription of the heterologous luciferase gene in the promoterless plasmid pGL2-Basic. All mutants showed significant transcriptional activity in the murine neuroblastoma cell line NB41A3. Transient expression assays suggested the presence of a positive regulator between -213 and -129 while a negative regulator was found in the region between -806 and -214. Relatively strong transcriptional activity was observed in neuronal NB41A3, glial C6 cells and hepatic HepG2, but very weak activity in skeletal muscle C2C12 cells. These findings confirm the tissue-specific activity of the mGIF promoter and suggest that this gene shares structural and functional similarities with the dopamine receptor genes that it regulates.

A Reliable Protocol for transfection of mature primary hippocampal neurons using a neuron-glia co-culture system (신경세포-신경교세포 공동배양을 이용한 성숙한 해마신경세포의 효율적인 형질전환 방법)

  • Lee, Hyun-Sook;Cho, Sun-Jung;Jung, Yong-Wook;Jin, Ing-Nyol;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.198-203
    • /
    • 2007
  • DNA transfection is a powerful tool for studying gene functions. The $Ca^{2+}$-phosphate precipitation remains one of the most popular and cost-effective transfection techniques. Mature neurons are more resistant to transfection than young ones and most other cell types, and easy to die if microenvironment changes. Here, we report a transfection protocol for mature neurons. The critical modifications are inclusion of glial cells in culture and careful control of $Ca^{2+}$-phosphate precipitation under microscope. Cerebral glial cells were grown until ${\sim}70-80%$ confluence in DMEM/10% horse serum, which was thereafter replaced with serum-free Neurobasal/Ara-C, and 319 hippocampal neurons were plated onto the glial layer Formation of fine $DNA/Ca^{2+}$-phosphate precipitates was induced using Clontech $CalPhos^{TM}$ Mammalian Transfection Kit, and the size ($0.5-1\;{\mu}m$ in diameter) and density(about 10 particles/$100\;{\mu}m^2$) were carefully controlled by the time of incubation in the medium. This modified protocol can be reliably applied for transfection of mature neurons that are maintained longer than two weeks in vitro, resulting in 10-15 healthy transfected neurons per a well of 24-well plates. The efficacy of the protocol was verified by punctate expression of $pEGFP-CaMKII{\alpha}$, a synaptic protein, and diffuse expression of pDsRed2. Our protocol provides a reliable method for transfection of mature neurons in vitro.

A Case of Cerebral Metastasis from Malignant Fibrous Histiocytoma (뇌로 전이한 악성 섬유성 조직구종 1례)

  • Kang, Kwan-Soo;Lee, Jung-Il;Suh, Yeon Lim
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.11
    • /
    • pp.1340-1344
    • /
    • 2001
  • This is a rare case of cerebral metastasis from malignant fibrous histiocytoma(MFH) of the soft tissue. A 62-year-old man underwent craniotomy for resection of multiple intracerebral masses under the impression of metastatic brain tumor with unknown primary site. Preoperative investigation failed to detect any extracranial lesion. At six months after the operation and whole brain radiotherapy, right shoulder mass was detected to grow and excised. Specimen from the brain and shoulder lesions revealed identical pathological findings of malignant fibrous histiocytoma except existence of glial fibrillary acidic protein(GFAP)-positive cells only in brain lesions. Palliative radiotherapy was performed for subsequently developing metastatic lesions in skeletal system. At twelve months after initial diagnosis recurrent lesion at right shoulder was detected and chemotherapy is given. This case is unique because metastatic brain lesion from MFH is rare and also cerebral metastasis as an initial manifestaion of MFH has not been reported before. Another important finding is that there was expression of GFAP only in brain lesions but not in extracranial primary site lesion. Although the presence of GFAP-positive cells is thought as one of characteristic histological findings of primary intracrainal MFH, our observation supports the hypothesis that GFAP-positive cells in primary intracranial MFH may be nonneoplastic astrocytes secondarily involved by MFH.

  • PDF

Nicotine Suppresses TNF-${\alpha}$ Expression in Human Fetal Astrocyte through the Modulation of Nuclear Factor-${\kappa}B$ Activation

  • Son, Il-Hong;Park, Yong-Hoon;Yang, Hyun-Duk;Lee, Sung-Ik;Han, Sun-Jung;Lee, Jai-Kyoo;Ha, Dae-Ho;Kang, Hyung-Won;Park, Joo-Young;Lee, Sung-Soo
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.106-112
    • /
    • 2008
  • Parkinson's disease (PD) progresses severely by a gradual loss of dopaminergic neurons in the substantia nigra (SN). Epidemiological studies showed that the incidences of PD were reduced by smoking of which the major component, nicotine might be neuroprotective. But the function of nicotine, which might suppress the incidences of PD, is still unknown. Fortunately, recently it was reported that a glial reaction and inflammatory processes might participate in a selective loss of dopaminergic neurons in the SN. The levels of tumour necrosis factor (TNF)-${\alpha}$ synthesised by astrocytes and microglia are elevated in striatum and cerebrospinal fluid (CSF) in PD. TNF-${\alpha}$ kills the cultured dopaminergic neurons through the apoptosis mechanism. TNF-${\alpha}$ release from glial cells may mediate progression of nigral degeneration in PD. Nicotine pretreatment considerably decreases microglial activation with significant reduction of TNF-${\alpha}$ mRNA expression and TNF-${\alpha}$ release induced by lipopholysaccharide (LPS) stimulation. Thus, this study was intended to explore the role of nicotine pretreatment to inhibit the expressions of TNF-${\alpha}$ mRNA in human fetal astrocytes (HFA) stimulated with IL-$1{\beta}$. The results are as follows: HFA were pretreated with 0.1, 1, and $10{\mu}g/mL$ of nicotine and then stimulated with IL-$1{\beta}$ (100 pg/mL) for 2h. The inhibitory effect of nicotine on expressions of TNF-${\alpha}$ mRNA in HFA with pretreated $0.1{\mu}g/mL$ of nicotine was first noted at 8hr, and the inhibitory effect was maximal at 12 h. The inhibitory effect at $1{\mu}g/mL$ of nicotine was inhibited maximal at 24 h. Cytotoxic effects of nicotine were noted above $10{\mu}g/mL$ of nicotine. Moreover, Nicotine at 0.1, 1 and $10{\mu}g/mL$concentrations significantly inhibited IL-$1{\beta}$-induced TF-${\kappa}B$ activation. Collectively, these results indicate that in activated HFA, nicotine may inhibit the expression of TNF-${\alpha}$ mRNA through the pathway which suppresses the NF-${\kappa}B$ activation. This study suggests that nicotine might be neuroprotective to dopaminergic neurons in the SN and reduce the incidences of PD.

Localization of the Major Retinal Neurotransmitters and Receptors and Müller Glia in the Retina of the Greater Horseshoe Bat (Rhinolophus ferrumequinum) (한국관박쥐 망막의 신경전달물질 및 수용체, 뮬러세포 동정)

  • Lee, Jun-Seok;Kwon, Oh-Ju;Jeon, Tae-Heon;Jeon, Chang-Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.391-396
    • /
    • 2015
  • Purpose: The objective of this study was to investigate the visual system of the greater horseshoe bat (Rhinolophus ferrumequinum) by location analysis of some major neurotransmitters glutamate, ${\gamma}$-aminobutyric acid (GABA), acetylcholine, and their receptors, and $m{\ddot{u}}ller$ glial cells in retina. Methods: Standard immunocytochemical techniques were used after vibratome section of retinal tissues of adult greater horseshoe bat for this study. Immnoreactions in immunofluorescence images were analyzed using confocal microscope. Results: Anti-glutamate-immunoreactive neurons were mainly localized in the ganglion cell layer (GCL). The majority of anti-GABA-immunoreactive cells distributed in the inner nuclear layer (INL), and GABAA receptors were localized in the inner plexiform layer (IPL). Anti-choline acetyltransferase-immuoreactive cholinergic neurons were mainly located in the INL and GCL, and most of nicotinic acetylcholine receptors were localized in the IPL. The $m{\ddot{u}}ller$ cells in the retina of the greater horseshoe bat stretched theirs range from the GCL to outer nuclear layer (ONL). Conclusions: This study revealed that the retinas of the greater horseshoe bats contain the same major neurotransmitters and receptors, and glial cell in visually functional mammalian retinas. The present results may suggest that the greater horseshoe bats have the functional retinas for visual analysis through the organized retinal neural circuits.

The Neurotoxicological Alterations Induced by Narcotic Drugs and Industrial Chemicals in the Rat are Associated with Quantitative Changes in Glial Fibrillary Acidic Protein (마약류 및 산업환경화학물질에 의한 GFAP의 신경독성표지물질화에 관한 유용성)

  • Cho, Dae-Hyun;Jeong, Yong;Kim, Jun-Gyou;Lee, Bong-Hun;Hwang, Se-Jin;Lee, Won-Yong;Kim, Jeong-Goo;Cho, Tai-Soon;Kim, Jin-Suk;Moon, Hwa-Hwey
    • Toxicological Research
    • /
    • v.11 no.2
    • /
    • pp.315-327
    • /
    • 1995
  • Diverse neurotoxic insults result in proliferation and hypertrophy of astrocytes, a subtype of glia in central nervous system. The hallmark of this response, often terms "reactive gliosis", is the enhanced expression of the major intermediate filament protein of castrocytes, glial fibrillary acidic protein (GFAP). These changes in the astrocytes suggest that GFAP may be a useful biochemical indicator of neurotoxicity. To investigate this possibility, we administered intra-peritoneally prototype nerotoxicants, metharnphetamine (MAP, 5 mg/kg), cocaine (30 mg/kg), N-buthyl benzenesulfonamide (NBBS, 300 mg/kg) and trimethytin (TMT, 8 mg/kg) to Wistar Rats and then assessed the effects of these agents on content of GFAP, which were determined by Sandwish ELISA and evaluated with neurotoxic symptoms, and quantitative changes of imrnunoreactivity of GFAP by light microscopic image analysis in specific regions. We found that assay of GFAP revealed time- and region-dependant patterns of neurotoxicity. The GFAP immunoreactivity of rat brain was increased in substantia nigra and hippocampus by MAP, NBBS and TMT; in roedial septal nucleus and nucleus accurnbens, it was also increased by RrBBS. Sandwich ELISA showed that GFAP levels of cerebrum in all groups on days 3 and 7 and that of brainstem(including cerebellum) in MAP, NBBS groups on day 1 and 3 were increased. A review of the background, design and results of these experiments are presented in this paper. Our findings indicate that GFAP is a sensitive and specific biomarker of neurotoxicity.otoxicity.

  • PDF

Inhibition of Neurogenesis of Subventricular Zone Neural Stem Cells by 5-ethynyl-2'-deoxyuridine (EdU) (5-ethynyl-2'-deoxyuridine (EdU)에 의한 뇌실하 영역 신경줄기세포의 신경 세포로의 분화 억제)

  • Park, Ki-Youb;Oh, Hyun-Chang;Lee, Ji-Yong;Kim, Man Su
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.623-631
    • /
    • 2017
  • In the subventricular zone (SVZ) and the subgranular zone of the brain, neurogenesis occurs throughout one's lifespan. Neural stem cells (NSCs) in these regions divide to maintain their stem cell pools as well as differentiate into neurons and glial cells. To monitor cell division, a thymidine analogue such as 5-ethynyl-2'-deoxyuridine (EdU) has been used. In some cases, EdU was applied to label newly born neurons. Here, we report about the effects of EdU on the proliferation and differentiation of NSCs cultured from mouse SVZ. First, when NSCs were cultured in a proliferation medium containing EdU for 24 hr, they did not generate any neurons under the following differentiation conditions. When EdU was applied to the proliferating NSCs for 1 hr prior to differentiation, neurogenesis was still substantially reduced. Second, EdU decreased cell proliferation of NSCs in dose- and time-dependent manners. Finally, EdU inhibited differentiation into oligodendrocyte lineage, while the number of glial fibrillary acidic protein (GFAP)-positive astrocytes increased. To our knowledge, these findings are the first to show the effects of EdU on the differentiation of SVZ NSCs and suggest that cell division is necessary for differentiation into neurons and oligodendrocytes.

Effects of Exogenous Insulin-like Growth Factor 2 on Neural Differentiation of Parthenogenetic Murine Embryonic Stem Cells

  • Choi, Young-Ju;Park, Sang-Kyu;Kang, Ho-In;Roh, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • v.36 no.1
    • /
    • pp.33-37
    • /
    • 2012
  • Differential capacity of the parthenogenetic embryonic stem cells (PESCs) is still under controversy and the mechanisms of its neural induction are yet poorly understood. Here we demonstrated neural lineage induction of PESCs by addition of insulin-like growth factor-2 (Igf2), which is an important factor for embryo organ development and a paternally expressed imprinting gene. Murine PESCs were aggregated to embryoid bodies (EBs) by suspension culture under the leukemia inhibitory factor-free condition for 4 days. To test the effect of exogenous Igf2, 30 ng/ml of Igf2 was supplemented to EBs induction medium. Then neural induction was carried out with serum-free medium containing insulin, transferrin, selenium, and fibronectin complex (ITSFn) for 12 days. Normal murine embryonic stem cells derived from fertilized embryos (ESCs) were used as the control group. Neural potential of differentiated PESCs and ESCs were analyzed by immunofluorescent labeling and real-time PCR assay (Nestin, neural progenitor marker; Tuj1, neuronal cell marker; GFAP, glial cell marker). The differentiated cells from both ESC and PESC showed heterogeneous population of Nestin, Tuj1, and GFAP positive cells. In terms of the level of gene expression, PESC showed 4 times higher level of GFAP expression than ESCs. After exposure to Igf2, the expression level of GFAP decreased both in derivatives of PESCs and ESCs. Interestingly, the expression level of $Tuj1$ increased only in ESCs, not in PESCs. The results show that IGF2 is a positive effector for suppressing over-expressed glial differentiation during neural induction of PESCs and for promoting neuronal differentiation of ESCs, while exogenous Igf2 could not accelerate the neuronal differentiation of PESCs. Although exogenous Igf2 promotes neuronal differentiation of normal ESCs, expression of endogenous $Igf2$ may be critical for initiating neuronal differentiation of pluripotent stem cells. The findings may contribute to understanding of the relationship between imprinting mechanism and neural differentiation and its application to neural tissue repair in the future.

Polioencephalomyelitis in Pigs Experimentally Infected with Porcine Enterovirus Isolated in Korea: I. Histopathological Observations (Enterovirus 감염에 의한 자돈의 Polioencephalomyelit: I. 병리조직학적 관찰)

  • Shin, Tae-kyun;Lee, Cha-soo
    • Korean Journal of Veterinary Research
    • /
    • v.25 no.2
    • /
    • pp.103-112
    • /
    • 1985
  • A total of 1-0 colostrum-deprived pigs (1 or 2-day-old) and 6 pigs (35-day-old), which had been raised by natural maternal nursing, were used to study the pathogenicity of the porcine enteroviruses by the intracerebral and intramuscular routes of inoculation, which the enterovirus were isolated from the diseased pigs in Korea. The porcine enteroviruses produced an identical polioencephalomyelitis in colostrum-deprived pigs and 35-day-old pigs, which manifested clinical signs and histopathological changes. Clinically it was characterized by incoordination, rise in rectal temperature, ataxia, flaccid paralysis in all the experimental groups. Histopathologically, the lesions were present in both grey and white matter at all levels of central nervous system, though usually more severe in the grey matter. These changes were characterized by meningeal infiltration, degeneration of nerve cells, neuronophagia, diffuse and focal gliosis, glial nodules and perivascular lymphocytic infiltrations. Ganglionitis of the dorsal root ganglia was frequently observed. On the basis of the clinical and histopathological changes mentioned above, it was concluded that porcine enteroviruses isolated in Korea were pathogenic strains which could produce polioencephalomyelitis in pigs. The most severe Jisease was prcduced by the inoculation of both enterovirus and hog cholera vaccine in the 35-day-old pigs at a time when colostral immunity presumably was low. The porcine enterovirus infections seemed to be associated with certain stress factor such as hog cholera vaccine in or immediately following the weanling period.

  • PDF

The effect of human mesenchymal stem cell injection on pain behavior in chronic post-ischemia pain mice

  • Yoo, Sie Hyeon;Lee, Sung Hyun;Lee, Seunghwan;Park, Jae Hong;Lee, Seunghyeon;Jin, Heecheol;Park, Hue Jung
    • The Korean Journal of Pain
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2020
  • Background: Neuropathic pain (NP) is considered a clinically incurable condition despite various treatment options due to its diverse causes and complicated disease mechanisms. Since the early 2000s, multipotent human mesenchymal stem cells (hMSCs) have been used in the treatment of NP in animal models. However, the effects of hMSC injections have not been studied in chronic post-ischemia pain (CPIP) mice models. Here, we investigated whether intrathecal (IT) and intrapaw (IP) injections of hMSCs can reduce mechanical allodynia in CPIP model mice. Methods: Seventeen CPIP C57/BL6 mice were selected and randomized into four groups: IT sham (n = 4), IT stem (n = 5), IP sham (n = 4), and IP stem (n = 4). Mice in the IT sham and IT stem groups received an injection of 5 μL saline and 2 × 104 hMSCs, respectively, while mice in the IP sham and IP stem groups received an injection of 5 μL saline and 2 × 105 hMSCs, respectively. Mechanical allodynia was assessed using von Frey filaments from pre-injection to 30 days post-injection. Glial fibrillary acidic protein (GFAP) expression in the spinal cord and dorsal root ganglia were also evaluated. Results: IT and IP injections of hMSCs improved mechanical allodynia. GFAP expression was decreased on day 25 post-injection compared with the sham group. Injections of hMSCs improved allodynia and GFAP expression was decreased compared with the sham group. Conclusions: These results suggested that hMSCs may be also another treatment modality in NP model by ischemia-reperfusion.