• Title/Summary/Keyword: Glial

Search Result 385, Processing Time 0.028 seconds

Role of phospholipase D and osteopontin in reactive glial cells after transient forebrain ischemia

  • Kim, Seong-Yun
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2000.04a
    • /
    • pp.15-16
    • /
    • 2000
  • Transient forebrain ischemia results in delayed neuronal death in the CA1 region of the hippocampus after injury, which is, at least in part, a consequence of excessive generation of reactive oxygen species. Previous in vitro studies using cell cultures or brain slices have demonstrated that phospholipase D (PLD) in the nervous system is involved in the signaling mechanism in response to a variety of agonists. Several recent studies have shown that reactive oxygen species stimulate phospholipase D (PLD) activity in several kinds of cells. Therefore, this raises the possibility that PLD activity is enhanced in the ischemic brain. Meanwhile, osteopontin (OPN) was initially identified as a sialoglycoprotein in bone, but has since been found in various tissues. Although not much is known about its function, OPN seems to play an important role in inflammation and tissue repair. Recently, it was reported that OPN was upregulated in the activated microglia after focal brain ischemia, suggesting that OPN might play a role in wound healing after a focal stroke.

  • PDF

Co-infection of Canine Distemper Virus and Toxoplasma gondii in a Dog (개에서 디스템퍼 바이러스와 톡소플라즈마의 혼합 감염)

  • 강홍원;강상철;양형석;배종희;김재훈
    • Journal of Veterinary Clinics
    • /
    • v.21 no.1
    • /
    • pp.80-82
    • /
    • 2004
  • A 3 month-old male dog with clinical signs of anorexia, soft stool, ocular and nasal discharge, cough and respiratory distress was submitted to the Cheju National University for diagnosis. At necropsy, tan to pulp]e-red sublobar to lobar consolidations were presented in apical and cardiac lobe of lung. Histopathologically, severe diffuse bronchointerstitial pneumonia with necrotic bronchiolitis was noted in the lung. The demyelinating encephalitis and astrocytosis were presented in cerebellum and cerebrum. Numerous round, ovoid or cluster of tachyzoites were also identified in alveolar lumen, alveolar wall and cytoplasm of macrophages in the lung. The orgasnisms were demonstrated as Toxoplasma (T) gondii by immunohistochemistry. Intranuclear or intracytoplasmic eosinophilic inclusion bodies were seen in the glial cells of the cerebellum. Canine distemper virus (CDV) specific antigens were demonstrated in the cerebellum by the immunohistochemistry. In our knowledge, this is believed to be the first confirmed report of co-infection of CDV and T gondii in dog in Korea.

Histopathological Observations on Viral Encephalomyelitis in Suckling Piglets Raised in Korea (포유자돈(哺乳仔豚)에 발생(發生)한 Viral Encephalomyelitis의 병리조직학적관찰(病理組織學的觀察))

  • Kim, Soon Bok;Park, Keun Sik;Shin, Dong Gyu;Lee, Chang Ku
    • Korean Journal of Veterinary Research
    • /
    • v.20 no.1
    • /
    • pp.25-27
    • /
    • 1980
  • The outbreak of viral encephalomyelitis (Talfan disease) in suckling piglets was diagnosed pathologically for the first time in Korea. The clinical signs of affected sucklings were very high morbidity without death, and fever ($39^{\circ}C$ or higher) with incoordination of the rear limbs and paresis, while no specific gross lesions were observed at autopsy. Histopathological changes were confined to the nervous system, and were of the nature of a nonsuppurative and nondemyelinating encephalomyelitis which is usual for the viral encephalitis. It was characterized by perivascular cuffing, meningitis, neuronal degeneration, neuronophagia and glial nodules in the brain and spinal cord.

  • PDF

Role of neuron and non-neuronal cell communication in persistent orofacial pain

  • Iwata, Koichi;Shinoda, Masamichi
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.19 no.2
    • /
    • pp.77-82
    • /
    • 2019
  • It is well known that trigeminal nerve injury causes hyperexcitability in trigeminal ganglion neurons, which become sensitized. Long after trigeminal nerve damage, trigeminal spinal subnucleus caudalis and upper cervical spinal cord (C1/C2) nociceptive neurons become hyperactive and are sensitized, resulting in persistent orofacial pain. Communication between neurons and non-neuronal cells is believed to be involved in these mechanisms. In this article, the authors highlight several lines of evidence that neuron-glial cell and neuron macrophage communication have essential roles in persistent orofacial pain mechanisms associated with trigeminal nerve injury and/or orofacial inflammation.

Past, Present, and Future of Brain Organoid Technology

  • Koo, Bonsang;Choi, Baekgyu;Park, Hoewon;Yoon, Ki-Jun
    • Molecules and Cells
    • /
    • v.42 no.9
    • /
    • pp.617-627
    • /
    • 2019
  • Brain organoids are an exciting new technology with the potential to significantly change our understanding of the development and disorders of the human brain. With step-by-step differentiation protocols, three-dimensional neural tissues are self-organized from pluripotent stem cells, and recapitulate the major millstones of human brain development in vitro. Recent studies have shown that brain organoids can mimic the spatiotemporal dynamicity of neurogenesis, the formation of regional neural circuitry, and the integration of glial cells into a neural network. This suggests that brain organoids could serve as a representative model system to study the human brain. In this review, we will overview the development of brain organoid technology, its current progress and applications, and future prospects of this technology.

Mediastinal Anaplastic Ependymoma

  • Fauziah, Dyah;Parengkuan, Irene Lingkan;Jiwangga, Dhihintia;Raharjo, Paulus;Basuki, Mudjiani
    • Journal of Chest Surgery
    • /
    • v.54 no.3
    • /
    • pp.232-234
    • /
    • 2021
  • Ependymomas arise from ependymal cells and can grow at any site in the central nervous system (CNS), as well as in some locations outside of the CNS. The latter is rare, contributing to the frequent misdiagnoses of such cases. Herein, we present the case of a 54-year-old man with a history of lower limb weakness and numbness. Magnetic resonance imaging revealed an extradural, heterogeneously enhanced solid lesion with a regular and well-defined border in the posterior mediastinum. A post-resection histopathological examination revealed tumor-forming perivascular pseudo-rosettes that showed immunoreactivity against glial fibrillary acidic protein, epithelial membrane antigen, and vimentin, as well as a high Ki-67 labeling index. Based on pathological features, a diagnosis of anaplastic ependymoma was established.

Transfer Learning Using Convolutional Neural Network Architectures for Glioma Classification from MRI Images

  • Kulkarni, Sunita M.;Sundari, G.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.198-204
    • /
    • 2021
  • Glioma is one of the common types of brain tumors starting in the brain's glial cell. These tumors are classified into low-grade or high-grade tumors. Physicians analyze the stages of brain tumors and suggest treatment to the patient. The status of the tumor has an importance in the treatment. Nowadays, computerized systems are used to analyze and classify brain tumors. The accurate grading of the tumor makes sense in the treatment of brain tumors. This paper aims to develop a classification of low-grade glioma and high-grade glioma using a deep learning algorithm. This system utilizes four transfer learning algorithms, i.e., AlexNet, GoogLeNet, ResNet18, and ResNet50, for classification purposes. Among these algorithms, ResNet18 shows the highest classification accuracy of 97.19%.

Neurofluid Dynamics and the Glymphatic System: A Neuroimaging Perspective

  • Toshiaki Taoka;Shinji Naganawa
    • Korean Journal of Radiology
    • /
    • v.21 no.11
    • /
    • pp.1199-1209
    • /
    • 2020
  • The glymphatic system hypothesis is a concept describing the clearance of waste products from the brain. The term "glymphatic system" combines the glial and lymphatic systems and is typically described as follows. The perivascular space functions as a conduit that drains cerebrospinal fluid (CSF) into the brain parenchyma. CSF guided to the perivascular space around the arteries enters the interstitium of brain tissue via aquaporin-4 water channels to clear waste proteins into the perivascular space around the veins before being drained from the brain. In this review, we introduce the glymphatic system hypothesis and its association with fluid dynamics, sleep, and disease. We also discuss imaging methods to evaluate the glymphatic system.

The Effects of Microcurrent Stimulation on the Astrocytes Proliferation at Injured Brain of Rabbit (극저전류자극이 손상된 토끼 뇌의 별아교세포 증식에 미치는 효과)

  • Kim, Ji-Sung;Min, Kyoung-Ok
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.3
    • /
    • pp.107-119
    • /
    • 2002
  • Astrocyte, which shares the greatest part of the brain (about 25%), is a land of glial cell that composes the central nervous system along with microglia, ependymal cell and oligodendroglia. It has 7-9nm of fibers in its cytoplasma, which are composed of glial fibrillary acidic protein (GFAP) and vimentin. As for the functions of the astrocyte, it has, so far, been supposed that the astrocyte will play a cytoskeletal role in maintaining the structure of the cerebrum, play a role as a blood-brain barrier so that it can induce migration of the neuron in its development and substances in the blood cannot go into the nervous tissue, and a role of immunology and phagocytosis. However, it was revealed today that it will be a role in preventing expansion of injury by attaching itself to the connective tissue such as the vessel and the pia mater when the nervous tissue or the arachnoid is injured. Microcurrent stimulation can control current, on the basis of A unit. That is, with such devices using it, it is possible to sense, from the outside, the injured current(wound current) of the lesion and to change it into the normal current, thereby promoting the restoration of the cells. In order to examine the effects of microcurrent stimulation on the injured astrocytes in the rabbits, this study was conducted with 24 New Zealand White Rabbit as its subjects, which were divided into 8 animals of the experiment group and 16 animals of the control group. After the animals in the experiment group were fixed to the stereotaxic apparatus, their hair was removed and their premotor area(association area) perforated by the micro-drill for skull-perforation with the depth of 8mm from the scalp. In one week after the injury, 4 animals in the control group and 8 animals in the experiment group were sacrificed and examined with immunohistochemical method. And in three weeks, the remaining 4 animals in the control group and 8 animals in the experiment group were also sacrificed and examined with the same way. The conclusion has been drawn as follows : In the control group sacrificed in one week after the injury, the astrocytes somewhat increased, compared with the normal animals, and in the group sacrificed in three weeks after the injury, they increased more (p < 0.05). The experiment group A in one week showed a little increase, but there was no significant differences, but the experiment group in three weeks showed more increase, compared with the experiment group in one week (p < 0.05). The experiment group B in one week showed more increase than the control group or the experiment group A, and the experiment group in three weeks showed more increase than the experiment group in one week (p < 0.05). Among the astrocytes, fibrous astrocytes were mostly observed, increasing as they are close to the lesion, and decreasing as they are remote from it. The findings show that microcurrent can cause the astrocytes to proliferate and that it will be more effective to stimulate the cervical part somewhat remote from the lesion rather than to directly stimulate the part of the lesion. Thus, microcurrent stimulation can be one of the methods that can activate the reaction of astrocytes, which is one of the mechanism for treating cerebral injury with hemorrhage. Therefore, this study will be used as basic research data for promoting restoration of functions in the patient with injury in the central nervous system.

  • PDF

Immunohistochemical Localization of Nerve Growth Factor, Glial Fibrillary Acidic Protein and Ciliary Neurotrophic Factor in the Forebrain of the Developing Mongolian Gerbil (발생중인 Mongolian gerbil의 전뇌에서 NGF, GFAP 및 CNTF의 분포)

  • Park, Il-Kwon;Lee, Kyoug-Youl;Song, Chi-Won;Kwon, Hyo-Jung;Park, Mi-Sun;Lee, Mi-Young;Jeong, Young-Gil;Lee, Chul-Ho;Ha, Kwon-Soo;Lee, Kang-Yi;Kim, Moo-Kang
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.2
    • /
    • pp.137-146
    • /
    • 2002
  • The immunohistochemical localization of the nerve growth factor (NGF), glial fibrillary acidic protein (GFAP) and ciliary neurotrophic factor (CNIF) in the developing Mongolian gerbil forebrain was investigated by the immunohistochemical and electron microscopy methods. Generally, the NGF specifically recognizes the neurons, the GFAP does the glia, and the CNIF does the motor neurons. This study demonstrates the location of the NGF, GFAP and CNTF in the developing Mongolian gerbil from the embryonic days 17 (E17) to the postnatal weeks 3 (PNW 3). The NGF was localized at E19 in the olfactocy bulb and the cerebral cortex, expanded to the hippocampus, and the diagonal bond from the late prenatal period to PNW 3. GFAP was observed in the lateral ventricle and the third ventricle at E17, projected into the cerebral cortex at E19. The GFAP was observed to have the largest numbers in several parts of the forebrain at the postnatal days 2 (PND2), while the most numerous CNTF was observed at PNW 2. The CNTF-IR cells were observed only in the postnatal days and were found in the olfactory bulb, cerebral cortex both neuron and neuroglia at PND3. Electron microscopy showed that the NGF, GFAP and CNTF were not related to any connections with any particular subcellular structure. These results suggest that NGF, GFAP and CNTF be related to the neuron and neuroglia at the prenatal and postnatal stages in the developing Mongolian gerbil.