• Title/Summary/Keyword: Glia

Search Result 57, Processing Time 0.044 seconds

Glia Dose not Participate in Antinociceptive Effects of Gabapentin in Rats with Trigeminal Neuropathic Pain

  • Yang, Kui-Y.;Kim, Hak-K.;Jin, Myoung-U.;Ju, Jin-S.;Ahn, Dong-K.
    • International Journal of Oral Biology
    • /
    • v.37 no.3
    • /
    • pp.121-129
    • /
    • 2012
  • Previous clinical studies have demonstrated that gabapentin, a drug that binds to the voltage-gated calcium channel ${\alpha}2{\delta}1$ subunit proteins, is effective in the management of neuropathic pain, but there is limited evidence that addresses the participation of glial cells in the antiallodynic effects of this drug. The present study investigated the participation of glial cells in the anti-nociceptive effects of gabapentin in rats with trigeminal neuropathic pain produced by mal-positioned dental implants. Under anesthesia, the left mandibular second molar was extracted and replaced by a miniature dental implant to induce injury to the inferior alveolar nerve. Mal-positioned dental implants significantly decreased the air-puff thresholds both ipsilateral and contralateral to the injury site. Gabapentin was administered intracisternally beginning on postoperative day (POD) 1 or on POD 7 for three days. Early or late treatment with 0.3, 3, or 30 ${\mu}g$ of gabapentin produced significant anti-allodynic effect in the rats with mal-positioned dental implants. On POD 9, in the mal-positioned dental implants group, OX-42, a microglia marker, and GFAP, an astrocyte marker, were found to be up-regulated in the medullary dorsal horn, compared with the naive group. However, the intracisternal administration of gabapentin (30 ${\mu}g$) failed to reduce the number of activated microglia or astrocytes in the medullary dorsal horn. These findings suggest that gabapentin produces significant antinociceptive effects, which are not mediated by the inhibition of glial cell function in the medullary dorsal horn, in a rat model of trigeminal neuropathic pain.

Neuroglial Cells and Schizophrenia (신경아교세포와 조현병)

  • Won, Seunghee
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.2
    • /
    • pp.47-54
    • /
    • 2015
  • In the past decade, structural, molecular, and functional changes in glial cells have become a major focus in the search for the neurobiological foundations of schizophrenia. Glial cells, consisting of oligodendrocytes, astrocytes, microglia, and nerve/glial antigen 2-positive cells, constitute a major cell population in the central nervous system. There is accumulating evidence of reduced numbers of oligodendrocytes and altered expression of myelin/oligodendrocyte-related genes that might explain the white matter abnormalities and altered inter- and intra-hemispheric connectivities that are characteristic signs of schizophrenia. Astrocytes play a key role in the synaptic metabolism of neurotransmitters ; thus, astrocyte dysfunction may contribute to certain aspects of altered neurotransmission in schizophrenia. Increased densities of microglial cells and aberrant expression of microglia-related surface markers in schizophrenia suggest that immunological/inflammatory factors are of considerable relevance to the pathophysiology of psychosis. This review describes current evidence for the multifaceted role of glial cells in schizophrenia and discusses efforts to develop glia-directed therapies for the treatment of the disease.

Stem Cells in Drug Screening for Neurodegenerative Disease

  • Kim, Hyun-Jung;Jin, Chang-Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Because the average human life span has recently increased, the number of patients who are diagnosed with neurodegenerative diseases has escalated. Recent advances in stem cell research have given us access to unlimited numbers of multi-potent or pluripotent cells for screening for new drugs for neurodegenerative diseases. Neural stem cells (NSCs) are a good model with which to screen effective drugs that increase neurogenesis. Recent technologies for human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) can provide human cells that harbour specific neurodegenerative disease. This article discusses the use of NSCs, ESCs and iPSCs for neurodegenerative drug screening and toxicity evaluation. In addition, we introduce drugs or natural products that are recently identified to affect the stem cell fate to generate neurons or glia.

Applications of Diffusion Tensor Imaging

  • Moseley, Michael E.
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.155-161
    • /
    • 2001
  • Anisotropic DWI - Mapping of the Proton Diffusion "tensor". In neural ordered tissue, it is thought that water diffusion is mainly influenced by the presence of myelin sheaths and intracellular structures. Perpendicular to the fiber tracts, the cholesterol-laden myelin lipid bilayers might restrict or hinder the spins from diffusing through the normally highly permeable cytomembrane. Diffusion along the fiber is more or less determined by subcellular structures, such as the endoplasmatic reticulum, mitochondria, neuro-filaments and macromolecules. In addition to that, the entire complex of axons and stabilizing tissue (i.e., glia cells, astrocytes) is also assumed to influence diffusion due to the tortuosity of proton translation, but the uniform distribution of such cells throughout the brain might render this notion less important as initially anticipated.

  • PDF

Erk activation mediates lipoPolysaccharide-induced induction of matrix metalloprotease-9 from rat primary astrocytes

  • Lee, Woo-Jong;Yoo, Byung-Kwon;Park, Gyu-Hwan;Ko, Kwang-Ho
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.304.2-304.2
    • /
    • 2002
  • In central nervous system. matrix metalloproteinases (MMPs) are produced by neuron as well as glia and implicated in physiological events such as neurite outgrowth and myelination etc. In addition. MMPs also contribute to the pathogenesis of several CNS diseases such as multiple sclerosis, Alzheimer's disease and malignant glioma. In spite of their functional importance, little is known about the signal transduction pathways leading to the induction of MMPs in CNS. Here. we investigated whether the activation of Erk(1/2) is involved in the induction of MMP-9 in LPS-stimulated primary astrocytes. (omitted)

  • PDF

Studies on Molecular Plasticity of Bergmann Glia following Purkinje Cell Degeneration (조롱박신경세포의 변성에 따른 버그만아교세포의 면역조직학적 연구)

  • Yoon, Chul-Jong;Cho, Sa-Sun;Lee, Ha-Kyu;Park, Min-Chul
    • Applied Microscopy
    • /
    • v.35 no.3
    • /
    • pp.165-176
    • /
    • 2005
  • Studies on molecular plasticity of Bermann glia (BG) after harmaline-induced Purkinje cell (PC) degeneration in the rat cerebellum. The intimate structural relationship between BG and PC, evidenced by the sheathing of the PC dendrites by veil-like process from the BG has been suggestive of the close functional relationship between these two cell types. However, little is known about metabolic couplings between these cells. This study designed to investigate molecular plasticity of BG in the rat cerebellum in which PCs were chemically ablated by harmaline treatment. Immunohistochemical examination reveals that harmaline induced PC degeneration causes a marked glial reaction in the cerebellum with activated BG and microglia aligned in parasagittal stripes within the vermis. In these strips, activated BG were associated with upregulaion of metallotheionein, while GLAST and was down regulated, as compared with nearby intact area where both BG are in contact with PCs. The data from this study demonstrate that BG can change their phenotypic expression when BG loose their contact with PCs. It is conceivable that activated BG may upregulate structural proteins, metallothionein expression to use for their proliferation and hypertrophy; metallothionein expression to cope with oxidative stress induced by PC degeneration and microglial activation. On the contrary, BG may down regulated expression of GLAST because sustained loss of contact with PCs would eliminate the necessity for the cellular machinery involved glutamate metabolism. In conclusion, BG might respond man to death of PCs by undergoing a change in metabolic state. It seems possible that signaling molecules released from PCs regulates the phenotype expression of BG. Also ultrastructures in the organelles of normal PC and BG are distinguished by mitochondrial appearance, and distributed vesicles at the synaptic area in the cytoplasm.

Neural Transcription Factors: from Embryos to Neural Stem Cells

  • Lee, Hyun-Kyung;Lee, Hyun-Shik;Moody, Sally A.
    • Molecules and Cells
    • /
    • v.37 no.10
    • /
    • pp.705-712
    • /
    • 2014
  • The early steps of neural development in the vertebrate embryo are regulated by sets of transcription factors that control the induction of proliferative, pluripotent neural precursors, the expansion of neural plate stem cells, and their transition to differentiating neural progenitors. These early events are critical for producing a pool of multipotent cells capable of giving rise to the multitude of neurons and glia that form the central nervous system. In this review we summarize findings from gain- and loss-of-function studies in embryos that detail the gene regulatory network responsible for these early events. We discuss whether this information is likely to be similar in mammalian embryonic and induced pluripotent stem cells that are cultured according to protocols designed to produce neurons. The similarities and differences between the embryo and stem cells may provide important guidance to stem cell protocols designed to create immature neural cells for therapeutic uses.