• Title/Summary/Keyword: Glass sealing parameter

Search Result 5, Processing Time 0.02 seconds

Determination on the Optimal Sealing Conditions of the Vacuum Glass Edge Parts using Design of Experiments Technique (실험계획법에 의한 진공유리의 모서리부 최적 접합공정조건 결정)

  • Lee, Jong-Gon;Jeon, Euy-Sik;Kim, Young-Shin;Park, Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2012
  • The glass edge sealing is one of the vacuum glazing core manufacturing process and it needs the high reliability for the vacuum keeping. Conventionally, the glass edge sealing had been being researched by the method that pasted the flit on the glass edge part and bonded two sheets of glass. But this way has the defect that can't make tempered glass. In order to remedy it's faults, in this paper, the glass edge was sealed by using the hydrogen mixture gas torch within the furnace. The parameter having an effect on the glass edge sealing through the basic test was set. And the correlation of the thickness of the glass edge and parameter were analyzed through the design of experiment. By using the Taguchi method, the optimal process condition for the glass edge sealing was drawn and the validity was verified.

Mathematical Model of the Edge Sealing Parameters for Vacuum Glazing Panel Using Multiple Regression Method (다중회귀분석법을 이용한 진공유리패널 모서리 접합부와 공정변수간의 수학적 모델 개발)

  • Kim, Young-Shin;Jeon, Euy-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.961-966
    • /
    • 2012
  • The concern about vacuum glass is enhanced as society gets greener and becomes more concerned about energy savings due to the rising cost of oil. The glass edge sealing process needs the high reliability among the main process for the vacuum glass development in order to maintain between the two glass by the vacuum. In this paper, the process of the edge sealing was performed by using the hydrogen mixture gas which is the high density heat source unlike the traditional method glass edge sealing by using the frit as the soldering process. The ambient temperature in the electric furnace was set in the edge sealing to prevents the thermal impact and transformation of the glasses and the temperature distribution uniformity was measured. The parameter of the edge sealing was set through the basic test and the mathematical relation with the area of the glass edge parts according to the parameter was drawn using the multiple regression analysis method.

Optimal Condition Determination of Glass Sealing Parameters using the Design of Experiment (실험계획법을 이용한 유리접합의 최적 공정 조건 결정)

  • Lee, Jong-Gon;Jeon, Euy-Sik
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.78-78
    • /
    • 2009
  • Glass sealing method is used glass bond as called frit in LCD, PDP process. but new sealing method is need to consider the endurance and economy. This paper present the new glass sealing method using high density gas torch in the furnace and process variable are defined by experiment. Taguchi Robust Experimental Design methods were applied for optimizing these four main processing parameters.

  • PDF

The Oxidation of Kovar in Humidified $N_2$/H$_2$ Atmosphere (가습된 $N_2$/H$_2$혼합가스 분위기에서의 Kovar 산화 거동)

  • 김병수;김민호;김상우;최덕균;손용배
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.2
    • /
    • pp.1-7
    • /
    • 2001
  • In order to form a uniform oxidation layer of spinel phase on Kovar which helps the strong bonding in Kovar-to-glass sealing, the humidified $N_2/H_2$ was used as an oxidation atmosphere. The oxidation of Kovar was controlled by diffusion mechanism and the activation energy was 31.61 kacl/mol at 500~$800^{\circ}C$. After oxidation at $600^{\circ}C$, the external oxidation layer was below 0.5 $\mu \textrm{m}$ thick. According to TEM analysis, oxidized Kovar was spinel its lattice parameter of 7.9 $\AA$. Oxidation of under $600^{\circ}C$ and in a humidified $N_2/H_2$ atmosphere, Kovar was found to be appropriate for the Kovar-to-glass sealing.

  • PDF

The Optimization of Continuous Casting Process for Production of Copper Clad Steel Wire (동피복 복합선재 제조를 위한 연속주조공정의 최적화)

  • Cho, Hoon;Kim, Dae-Geun;Hwang, Duck-Young;Jo, Hyung-Ho;Kim, Yun-Kyu;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.25 no.6
    • /
    • pp.259-264
    • /
    • 2005
  • The copper clad steel wire is used extensively as lead wires of electronic components such as capacitors, diodes and glass sealing lamp because the wire combines the strength and low thermal expansion characteristic of Fe-Ni steel with the conductivity and corrosion resistance of copper. In order to fabricate the copper clad steel wire, several processes including electro-plating, tubecladding extrusion process and dip forming process have been introduced and applied. The electroplating process for the production of copper clad steel wire shows poor productivity and induces environmental load generation such as electroplating solution. The dip forming process is suitable to mass production of copper clad steel such as trolley wire. and need expensive manufacturing facilities. The present paper describes the improvement of the conventional continuous casting process to fabricate copper clad steel wire, which its core metal is low thermal expansion Fe-Ni alloy and its sheath material is copper. In particular, the formation of intermetallic compound at interface between core and sheath was investigated in order to introduce optimum continuous casting process parameter for fabrication of copper clad steel wire with higher electrical conductivity. The mechanical strength of copper clad steel wire was also investigated through wiredrawing process with of 95% in total reduction ratio.