• 제목/요약/키워드: Glass molding

검색결과 294건 처리시간 0.025초

칼코게나이드 유리 소재의 PGM 가공 렌즈를 사용한 저가의 적외선 광학계 설계와 제작 (Design and Fabrication of Low Cost Infrared Optical System Using Precision Glass Molding Lens Made by Chalcogenide Glass)

  • 오승은;이선규;최중규;송국현;백종식
    • 한국광학회지
    • /
    • 제23권4호
    • /
    • pp.154-158
    • /
    • 2012
  • 본 논문에서는 적외선 광학장비의 가격 경쟁력을 확보하고자 상대적으로 저렴한 비용으로 제작이 가능한 PGM(Precision Glass Molding) 가공 렌즈로 구성된, 비냉각형 검출기용 적외선 광학계를 설계 및 제작하였다. PGM 가공이 가능하도록 광학계의 모든 렌즈에 칼코게나이드 유리(Chalcogenide Glass) 소재를 사용하였으며, 자체 비열화가 구현되도록 설계하였다. 또한 기존 가공법인 SPDT(Single Point Diamond Turning) 방법으로 제작된 렌즈로, 동일한 광학계를 구성하여 PGM 가공 렌즈의 성능 측정에 사용하였다. 제작된 두 광학계의 변조전달함수(MTF) 측정 결과와 실제 영상의 촬영 결과를 비교하여 분석한 결과, 가공 방법에 따른 렌즈의 성능 차이는 그리 크지 않음을 확인할 수 있었다. 따라서 향후 PGM 가공 렌즈의 사용이 증가하면, 적외선 광학장비의 가격 경쟁력이 향상될 것으로 기대된다.

고화소 카메라폰 모듈을 위한 Glass 렌즈 성형용 Silicon Carbide 코어의 초정밀 가공에 관한 연구 (A Study on Ultra Precision Grinding of Silicon Carbide Molding Core for High Pixel Camera Phone Module)

  • 김현욱;김정호;;곽태수;정상화
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.117-122
    • /
    • 2010
  • Recently, aspheric glass lens molding core is fabricated with tungsten carbide(WC). If molding core is fabricated with silicon carbide(SiC), SiC coating process, which must be carried out before the Diamond-Like Carbon(DLC) coating can be eliminated and thus, manufacturing time and cost can be reduced. Diamond Like Carbon(DLC) is being researched in various fields because of its high hardness, high elasticity, high durability, and chemical stability and is used extensively in several industrial fields. Especially, the DLC coating of the molding core surface used in the fabrication of a glass lens is an important technical field, which affects the improvement of the demolding performance between the lens and molding core during the molding process and the molding core lifetime. Because SiC is a material of high hardness and high brittleness, it can crack or chip during grinding. It is, however, widely used in many fields because of its superior mechanical properties. In this paper, the grinding condition for silicon carbide(SiC) was developed under the grinding condition of tungsten carbide. A silicon carbide molding core was fabricated under this grinding condition. The measurement results of the SiC molding core were as follows: PV of 0.155 ${\mu}m$(apheric surface) and 0.094 ${\mu}m$(plane surface), Ra of 5.3 nm(aspheric surface) and 5.5 nm(plane surface).

칼코겐유리를 활용한 회절비구면렌즈 압축성형 (Compression Molding of Diffractive-Aspheric Lenses Using Chalcogenide Glasses)

  • 김지관;최영수;안준형;손병래;황영국
    • 한국기계가공학회지
    • /
    • 제19권6호
    • /
    • pp.43-48
    • /
    • 2020
  • This study explores the compression molding of diffractive-aspheric lenses using GeSbSe chalcogenide glasses. A mold core with diffractive structure was prepared and a chalcogenide glass lens was molded at various temperatures using the corresponding core. The effect of molding temperature on the transcription characteristics of diffractive structure was examined, by measuring and comparing the diffractive structure between the mold core and the molded chalcogenide glass lens using a microscope and a white light interferometer. In addition, the applicability of the molded lens for thermal imaging was evaluated, by measuring the form error.

광통신용 비구면 렌즈 초정밀 성형 공정 연구 (Study on the Superprecision Glass Molding of Aspherical Lens for Optical Communication Module)

  • 장경수;이태호;노태영;김창석;정명영
    • 한국정밀공학회지
    • /
    • 제27권1호
    • /
    • pp.18-24
    • /
    • 2010
  • Efforts to obtain more efficient coupling of light from a laser diode to a single mode fiber have continued for various applications such as links for optical fiber communication systems. In TO-can package, configuration of optimized aspherical lens is bi-aspheric and its diameter is 2.4mm. We designed and fabricated aspherical coupling lens by means of glass molding technique under consideration of glass shrinkage. By controlling the aspherical profile error and surface roughness which were below 90nm and 10nm, respectively, we obtained the low coupling loss, 5.40dB, which was able to use for coupling a single mode fiber to laser diode.

열변형 보정을 통한 열화상카메라용 초정밀 칼코지나이드 유리렌즈 몰드성형 및 특성 평가 (Molding and Evaluation of Ultra-Precision Chalcogenide-Glass Lens for Thermal Imaging Camera Using Thermal Deformation Compensation)

  • 차두환;김정호;김혜정
    • 한국전기전자재료학회논문지
    • /
    • 제27권2호
    • /
    • pp.91-96
    • /
    • 2014
  • Aspheric lenses used in the thermal imaging are typically fabricated using expensive single-crystal materials (Ge and ZnS, etc.) by the costly single point diamond turning (SPDT) process. As a potential solution to reduce cost, compression molding method using chalcogenide glass has been attracted to fabricate IR optic. Thermal deformation of a molded lens should be compensated to fabricate chalcogenide aspheric lens with form accuracy of the submicron-order. The thermal deformation phenomenon of molded lens was analyzed ant then compensation using mold iteration process is followed to fabricate the high accuracy optic. Consequently, it is obvious that compensation of thermal deformation is critical and useful enough to be adopted to fabricate the lens by molding method.

유리섬유가 첨가된 수지에서 사출성형품의 성형수축에 관한 연구 (Investigation of the Part Shrinkage in Injection Molding for Class Fiber Reinforced Thermoplastics)

  • 모정혁;류민영
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.515-521
    • /
    • 2004
  • The shrinkages of injection molded parts are different in molding operational conditions and mold design. It also differs from resins. The shrinkages of injection molded parts fur PBT (polybutylene terephthalate), PC (polycarbonate), and glass reinforced PBT and PC have been studied for various operational conditions of injection molding. The part shrinkage of crystalline polymer, PBT was higher than that of amorphous polymer, PC by about two times. The part shrinkages of both polymers decreased as glass fiber content increases. Higher injection temperature and lower injection pressure resulted in a higher shrinkage in both PBT and PC resins. As mold temperature increases the part shrinkage of PC decreased. However, the part shrinkage of PBT increased as mold temperature increases. The part shrinkages of PBT and PC resins decreased as gate size increases since the pressure delivery is mush easier for a larger gate size. The part shrinkage of flow direction was less than that of the perpendicular direction to the flow for both pure and glass fiber reinforced resins. The part shrinkage at the position close to the gate was less than that of the position far from the gate.

광정보저장용 광픽업 대물렌즈 성형용 초경합금 (Co 0.5%) 초정밀절삭 특성(I) (The property of WC(Co 0.5%) ultra precision turning for optical pick-up objective lens molding press for optical infomation storing(I))

  • 김민재;이준기;황연;김혜정;김정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.178-178
    • /
    • 2009
  • High-density optical information storing equipment, which is using Blu-ray, is the next generation information storing equipment that has about form six times to thirty-five times capacities. and high-density optical information storing equipment uses high NA(Numerical Aperture) aspheric glass objective lens as optical pick-up equipment to record and recognize high-density date. Generally this objective lens is developed and produced through a way of GMP(Glass Molding Press) that uses molding core that is performde by Ultra precision grinding, but grinding performing that has high-accuracy is very difficult because objective lens form is high NA. In this research, we preformed Ultra precision turning, using single crystal diamond bite, about WC(Co 0.5%), sintering brittleness material that is used molding core's material for GMP. and we confirmed aspheric glass lens compression of deformities molding core's Ultra precision turning possibility by measuring surface roughness(Ra) and processing surface's condition.

  • PDF

열가소성 복합재료의 압축성형조건에 따른 기계적 특성 변화 (The Change of Mechanical Properties with Forming Conditions of Thermoplastic Composite in Compression Molding)

  • 이중희;이호언
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1416-1422
    • /
    • 2001
  • The objective of this work was to characterize mechanical properties of thermoplastic composites with various forming conditions in compression molding. Randomly oriented long glass fiber reinforced polypropylene(PP) was used in this work. The composite materials contained 20%, 30%, and 40% glass fiber by weight. Compression molding was conducted at various mold temperatures and charge sizes. The temperatures on the mold surface and at the material in the mid-plain were monitored during the molding. Differential Scanning Calorimeter was used to measure crystallinity at both in-side and out-side of the sheet material. Crystallinity at each temperature was also measured by X-ray diffractometer. Dimensional stability was studied at various conditions with the spring forward angle. Among the processing parameters, the crystallization time at the temperature above 130$^{\circ}C$, was found to be the most effective. Spring-forward angle was reduced and the tensile modulus was increased as the mold temperature increased.