• Title/Summary/Keyword: Glass map

Search Result 45, Processing Time 0.039 seconds

Numerical and laboratory investigations of electrical resistance tomography for environmental monitoring

  • Heinson Tania Dhu Graham
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • Numerical and laboratory studies have been conducted to test the ability of Electrical Resistance Tomography-a technique used to map the electrical resistivity of the subsurface-to delineate contaminant plumes. Two-dimensional numerical models were created to investigate survey design and resolution. Optimal survey design consisted of both downhole and surface electrode sites. Resolution models revealed that while the bulk fluid flow could be outlined, small-scale fingering effects could not be delineated. Laboratory experiments were conducted in a narrow glass tank to validate theoretical models. A visual comparison of fluid flow with ERT images also showed that, while the bulk fluid flow could be seen in most instances, fine-scale effects were indeterminate.

Material Classification Using Reflected Signal of Ultrasonic Sensor (초음파의 반사 신호를 이용한 실내환경의 재질 인식)

  • Kim Dal-Ho;Lee Sang-Ryong;Lee Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.580-584
    • /
    • 2006
  • Material information for environment may be useful to accomplish mobile robot localization. A procedure to classify a set of indoor materials (glass, steel, wood, aluminum and concrete) with the reflected signal of ultrasonic sensor is proposed in this paper. The main idea is to use material-specific reflection characteristics for the recognition of material type. To achieve the classification task, we modeled reflected signal as a maximum amplitude with respect to distance. In this way, we can generate echo signal models for the given materials and these models are used to compare with the current sensor reading. The experimental results show that the proposed method may give material information during map building task of mobile robot.

ORB-SLAM based SLAM Framework for the Spatial Recognition using Android Oriented Tethered Type AR Glasses (안드로이드 기반 테더드 타입 AR 글래스의 공간 인식을 위한 ORB-SLAM 기반 SLAM프레임워크 설계)

  • Do-hoon Kim;Joongjin Kook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.6-10
    • /
    • 2023
  • In this paper, we proposed a software framework structure to apply ORB-SLAM, the most representative of SLAM algorithms, so that map creation and location estimation technology can be applied through tethered AR glasses. Since tethered AR glasses perform only the role of an input/output device, the processing of camera and sensor data and the generation of images to be displayed through the optical display module must be performed through the host. At this time, an Android-based mobile device is adopted as the host. Therefore, the major libraries required for the implementation of AR contents for AR glasses were hierarchically organized, and spatial recognition and location estimation functions using SLAM were verified.

  • PDF

Color Tunable Nanostructures by Polarization Control for Display Applications

  • Cho, Eun-Byurl;Ko, Yeong-Il;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.567-567
    • /
    • 2013
  • Surface plasmon resonance is the enhancement of electromagnetic wave caused by oscillation on the metal and dielectric interfaces. Surface plasmons with nanohole arrays provides an enhancedresonance for the specific wavelengths of interests. Asymmetric array of nanoscale structures can enable orientation dependent shift of resonance wavelengths when combined with the control of polarization for incident visible light, thus providing color tunability. Appropriate lattice constants along the direction of polarization in rectangular nanohole arrays can determine the resonance condition generating red (R), green (G), and blue (B) colors and potentially be applied to display applications. In ourprevious report, we have optimized the ion beam nanomachining conditions to fabricate the nanostructures on the metal film. We apply the fabrication conditions to make nanoscale hole arrays using 100 nm thick gold layer on the glass substrate with the optimal design of periodicities along x, y, and diagonal directions of a=440 nm, b=520 nm, c=682 nm, and the hole diameter of d=200 nm. Using the reflective light in dark field mode of optical microscope, we can observe different colors. When the polarizer is paralleled along a, b, or c direction, the represented color is changed to R, G, and B, respectively. We further map the color using i1 to correlate the conditions of the nanohole arrays with their characteristic color.

  • PDF

A Study on the Prediction of the Nonlinear Chaotic Time Series Using a Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경 회로망을 이용한 비선형 혼돈 시계열의 예측에 관한 연구)

  • Lee, Hye-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2209-2211
    • /
    • 2004
  • Unlike the wavelet neural network, since a mother wavelet layer of the self-recurrent wavelet neural network (SRWNN) is composed of self-feedback neurons, it has the ability to store past information of the wavelet. Therefore we propose the prediction method for the nonlinear chaotic time series model using a SRWNN. The SRWNN model is learned for the modeling of a function such that the inputs arc known values of the time series and the output is the value in the future. The parameters of the network are tuned to minimize the difference between the nonlinear mapping of the chaotic time series and the output of SRWNN using the gradient-descent method for the adaptive backpropagation algorithm. Through the computer simulations, we demonstrate the feasibility and the effectiveness of our method for the prediction of the logistic map and the Mackey-Glass delay-differential equation as a nonlinear chaotic time series.

  • PDF

Optical Tracking of Three-Dimensional Brownian Motion of Nanoparticles

  • Choi C. K.;Kihm K.D.
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.3-19
    • /
    • 2005
  • Novel optical techniques are presented for three-dimensional tracking of nanoparticles; Optical Serial Sectioning Microscopy (OSSM) and Ratiometric Total Internal Reflection Fluorescent Microscopy (R-TIRFM). OSSM measures optically diffracted particle images, the so-called Point Spread Function (PSF), and dotermines the defocusing or line-of-sight location of the imaged particle measured from the focal plane. The line-of-sight Brownian motion detection using the OSSM technique is proposed in lieu of the more cumbersome two-dimensional Brownian motion tracking on the imaging plane as a potentially more effective tool to nonintrusively map the temperature fields for nanoparticle suspension fluids. On the other hand, R-TIRFM is presented to experimentally examine the classic theory on the near-wall hindered Brownian diffusive motion. An evanescent wave field from the total internal reflection of a 488-nm bandwidth of an argon-ion laser is used to provide a thin illumination field of an order of a few hundred nanometers from the wall. The experimental results show good agreement with the lateral hindrance theory, but show discrepancies from the normal hindrance theory. It is conjectured that the discrepancies can be attributed to the additional hindering effects, including electrostatic and electro-osmotic interactions between the negatively charged tracer particles and the glass surface.

  • PDF

A Study on the Quality Deviation of Passenger Cars using the Robust Design (강건 설계 기법을 이용한 승용차의 품질 산포에 관한 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.110-113
    • /
    • 2006
  • This paper describes the development process of body and full vehicle for reduced idle vibration through the data level of frequency and sensitivity. The vibration mode map is used to separate body structure modes from resonance of engine idle nm and steering system. This paper describes the analysis approach process to reduce the variation of uncertainties for idle vibration performance at initial design stage. The robust design method is performed to increase the stabilization performance under vehicle vibration. It is used to predict the effects of the stiffness deviation according to the spot welding condition of the body structure. The tolerance associated with hood over slam bumper is analyzed for the quality deviation of the moving system in full vehicle. And the glass sealant stiffness and weight difference is considered for the deviation characteristic. The design guideline is suggested considering sensitivity about body and full vehicle by using mother car at initial design stage. It makes possible to design the good NVH performance and save vehicles to be used in tests. These improvements can lead to shortening the time needed to develop better vehicles.

  • PDF

Numerical and Experimental Study to Improve Thermal Sensitivity and Flow Control Accuracy of Electronic Thermostat in the Engine for Hybrid Vehicle (하이브리드 자동차용 엔진 내부의 전자식 수온조절기의 감온성 및 유량제어 정확도 향상을 위한 수치 및 실험적 연구)

  • Jeong, Soo-Jin;Jeong, Jinwoo;Ha, Seungchan
    • Journal of ILASS-Korea
    • /
    • v.26 no.3
    • /
    • pp.135-141
    • /
    • 2021
  • High-efficient HEV Engine cooling systems reflects variable coolant temperature because it can decrease the hydrodynamic frictional losses of lubricated engine parts in light duty conditions. In order to safely raise the operating temperature of passenger cars to a constant higher level, and thus optimize combustion and all accompanying factors, a new thermostat technology was developed : the electronically map-controlled thermostat. In this work, various crystalline plastics such as polyphthalamide (PPA) and polyphenylenesulfide (PPS) mixed with various glass fiber amounts were introduced into plastic fittings of automotive electronic controlled thermostat for the purpose of suppressing influx of coolant into the element and undesirable opening during hot soaking. Skirt was installed around element frame of automotive electronic controlled thermostat for improving thermal sensitivity in terms of response time, hysteresis and melting temperature. To validate the effectiveness and optimum shape of skirt, thermal sensitivity test and three-dimensional CFD simulation have been performed. As a consequence, important improvement in thermal sensitivity with less than 3℃ of maximum coolant temperature between opening and engine inlet was obtained.

Kenaf Is the Key to Go Green in the Era of Environmental Crisis: A Review

  • In-Sok Lee;Yu-Rim Choi;Ju Kim
    • Korean Journal of Plant Resources
    • /
    • v.35 no.6
    • /
    • pp.820-824
    • /
    • 2022
  • Ecologically sustainable means of development is the point to support environmental homeostasis. One of our roles is to find bio-degradable resources that can be substituted for petroleum-based products to effectively abide by the natural viability. To counter the issues of deforestation and preserve biodiversity, it is necessary to produce a non-wood crop that can fulfill the requirement for raw material from which several products can be produced. Kenaf (Hibiscus cannabinus), a member of the family Malvaceae, is showing sufficient potentiality along this road-map. Due to its rich fiber content, it has been used extensively in various fields for long, probably as early as 4,000 BC. At present, kenaf has been used as provider of paper, plastics, fiber glass, biofuel, activated carbon and epoxy composite. This obviously catch one's attention towards its capability to replace petroleum-based products as a whole. Moreover, the plant shows considerable relevance in decreasing pollutants by virtue of its enormous absorption capacity. These multiple applications of kenaf justify its credibility to be the best resource for the better world. The paper presents an overview on its numerous uses reported in the literature that we have investigated and its great potential as a valuable multipurpose crop.

A Pilot Research for Real-Time Specific Patient Quality Assurance Using the Hybrid Optimized Vmat Phantom (Hovp) in Volume Modulated Arc Therapy (체적변조회전치료에서 Hybrid Optimized VMAT Phantom (HOVP)을 이용한 실시간 환자 맞춤형 정도관리를 위한 예비연구)

  • Huh, Hyun-Do;Choi, Sang-Hyoun;Kim, Woo-Chul;Kim, Hun-Jeong;Kim, Kum-Bae;Kim, Seong-Hoon;Cho, Sam-Ju;Min, Chul-Kee;Cho, Kwang-Hwan;Lee, Sang-Hoon;Lee, Suk;Shim, Jang-Bo;Shin, Dong-Oh;Ji, Young-Hoon
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.206-215
    • /
    • 2011
  • The purpose of this was to investigate the measurement of fluence dose map for the specific patient quality assurance. The measurement of fluence map was performed using 2D matrixx detector. The absorbed dose was measured by a glass detector, Gafchromic film and ion chamber in Hybrid Optimized VMAT Phantom (HOVP). For 2D Matrixx, the results of comparison were average passing rate $85.22%{\pm}1.7$ (RT_Target), $89.96%{\pm}2.15$ (LT_Target) and $95.14%{\pm}1.18$ (G4). The dose difference was $11.72%{\pm}0.531$, $-11.47%{\pm}0.991$, $7.81%{\pm}0.857$, $-4.14%{\pm}0.761$ at the G1, G2, G3, G4. In HOVP, the results of comparison for film were average passing rate (3%, 3 mm) $93.64%{\pm}3.87$, $90.82%{\pm}0.99$. We were measured an absolute dose in steep gradient area G1, G2, G3, G4 using the glass detector. The difference between the measurement and calculation are 8.3% (G1), -5.4% (G2), 6.1% (G3), 7.2% (G4). The using an Ion-chamber were an average relative dose error $-1.02%{\pm}0.222$ (Rt_target), $0.96%{\pm}0.294$ (Lt_target). Though we need a more study using a transmission detector. However, a measurement of real-time fluence map will be predicting a dose for real-time specific patient quality assurance in volume modulated arc therapy.