• Title/Summary/Keyword: Glass machining

Search Result 159, Processing Time 0.036 seconds

Micro Groove Cutting of Glass Using Abrasive Jet Machining (Abrsive Jet Machining을 이용한 유리의 미세 홈 가공)

  • 최종순;박경호;박동삼
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.963-966
    • /
    • 2000
  • Abrasive jet machining(AJM) process is similar to the sand blasting, and effectively removes hard and brittle materials. AJM has applied to rough working such as deburring and rough finishing. As the needs for machining of ceramics, semiconductor, electronic devices and LCD are increasing, micro AJM was developed, and became the inevitable technique to micromachining. This paper describes the performance of the micro AJM in micro groove cutting of glass. Diameter of hole and width of line in this groove cutting is 80${\mu}{\textrm}{m}$. Experimental results showed good performance in micro groove cutting in glass, but the size of machined groove was increased about 2~4${\mu}{\textrm}{m}$. therefore, this micro AJM could be effectively applied to the micro machining of semiconductor, electronic devices and LCD parts.

  • PDF

Micro Grooving of Glass Using Micro Abrasive Jet Machining (Micro Abrasive Jet Machining을 이용한 유리의 미세 홈 가공)

  • Choi, Jong-Soon;Park, Keong-Ho;Park, Dong-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.178-183
    • /
    • 2001
  • Abrasive jet machining(AJM) process is similar to the sand blasting and effectively removes hard and brittle materials. AJM has applied to rough working such as debarring and rough finishing. As the need for machining of ceramics, semiconductor, electronic devices and LCD are increasing, micro AJM is developed, and has become the inevitable technique to micromachining. This paper describes the performance of the micro AJM in micro grooving of glass. Diameter of hole and width of line in grooving is 80${\mu}{\textrm}{m}$. Experimental results showed good performance in micro grooving of glass, but the size of machined groove increased about 2~4${\mu}{\textrm}{m}$. With the fine tuning of masking process and compensation of film wear. this micro AJM could be effectively applied to the micro machining of semiconductor, electronic devices and LCD.

  • PDF

An Experimental Study of Ultra-Precision Turning of Optical Glass(BK7) (광학유리(BK7) 초정밀절삭의 실험적 연구)

  • Kim, Min-Jae;Lee, June-Key;Yun, Yeong-Gon;Lee, Hyeon-Sung;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.382-385
    • /
    • 2011
  • There is an immense need to obtain nanometric surface finish on optical glass owing to the advantage of improved performance of the components. But owing to brittleness and hardness, optical glass is one of the materials that is difficult to ultra-precision turning. According to the hypothesis of ductile mode machining, regardless of their hardness and brittleness, will undergo a transition from brittle to ductile machining region below a critical undeformed chip thickness. Below this threshold, it is suggested that the energy required for plastic formation. Thus, plastic deformation is the predominant mechanism of material removal in machining these materials in this mode. An experimental study is conducted diamond cutting for machining BK7 glass. The investigation presents the feasibility of achieving nanometric surface and the understanding the mechanism of cutting glass, proving the cutting edge radius effect.

Color modification inside a transparent glass(BK7) using a femtosecond laser (펨토초 레이저 기반 투명유리(BK7) 내부의 컬러 미세형상 가공)

  • Kim, Hoon-Young;Yoon, Ji-Wook;Choi, Won-Seok;Park, Jung-Kyu;Choi, Ji-Yeon;Kim, Jae-Goo;Whang, Kyoung-Hyun;Cho, Sung-Hak
    • Laser Solutions
    • /
    • v.15 no.3
    • /
    • pp.16-19
    • /
    • 2012
  • We have successfully formed brown colored patterns inside of a transparent borosilicate glass generally known as BK7, laying the focus of near infrared Ti: sapphire femtosecond laser beam in the bulk BK7 glass. It is important to keep the laser power well below the damage threshold of BK7 in forming the color center. According to the low laser power, there was no laser induced mechanical damage such as cracks or threads in the color formed area. From the absorbance spectrum and its gaussian fitting, we found the band gap of BK7, 4.21eV, and three absorption edges.

  • PDF

Microdrilling of Glass Substrates by Electrochemical Discharge Machining in NaOH Solution (NaOH 수용액을 이용한 전기화학적 방전가공법에 의한 유리기판의 미세가공)

  • 홍석우;정귀상;최영규
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.427-430
    • /
    • 1998
  • Electro Discharge Machining (EDM) is a so-call non-conventional machining technique. This paper presents the experimental results of an EDM technique for the fabrication of microholes on #7440 pyrex glass substrates. With various applied voltages and at various concentration of NaOH solution, the glass substrates have been microdrilled using the copper electrodes of which diameters are 250 $\mu\textrm{m}$ to 450 $\mu\textrm{m}$. The machined throughholes have been observed the top diameter, the bottom diameter and machining time have been measured. The experimental results show that the machining time decreases as the concentration of NaOH solution increases, the applied voltage increases and the needle diameter decreases. Also, the top diameter increases as the needle diameter increases or the applied voltage increases. The bottom diameter decreases as the needle diameter decreases or the applied voltage decreases.

  • PDF

Fabrication of PCD Micro Tool and its Hybrid Micro Machining (다결정 다이아몬드를 이용한 미세 공구 제작과 이를 이용한 미세 복합 가공)

  • Doan, Cao Xuan;Kim, Bo-Hyun;Chung, Do-Kwan;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.694-700
    • /
    • 2011
  • Since polycrystalline diamond (PCD) has high hardness like diamond, it has been used as tool material for lathe and milling of non-ferrite material. A micro tool fabricated from PCD material can be used for micro machining of hard material such as tungsten carbide, glass, and ceramics. In this paper, micro PCD tools were fabricated by micro EDM (electrical discharge machining) and used for micro grinding of glass. Craters generated on the tool surface by EDM spark work as like grits in grinding process. The effects of tool shapes, tool roughness and PCD grain size were investigated. Also studied was a hybrid process combining electrochemical discharge machining (ECDM) and micro grinding for micro-structuring of glass.

Evaluation of Efficiency on Glass Precision Machining by using Abrasive Water-jet (연마재 워터젯 가공을 이용한 유리 미세 가공 성능 평가)

  • Bahk, Yeon-Kyoung;Park, Kang-Su;Kim, Hyung-Hoon;Shin, Bo-Sung;Ko, Jong-Soo;Go, Jeung-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.87-93
    • /
    • 2010
  • This paper presents an evaluation of efficiency on glass precision machining by using abrasive water-jet machine. In this study, problems of conventional water-jet machining are examined experimentally and are analysized numerically. Especially, the reason of whitening on the machined surface of biochip glass is determined. It is found that the mass flow rate of abrasive input and transverse speed of water-jet are key parameters to control the direct machining of micro hole and channel on a glass substrate. Based on results of experimental analysis, possibility of direct fabrication of micro holes and channels on a glass substrate is successfully confirmed.

Microdrilling of Glass Substrates by Electrochmical Discarge Machining in NaOH Solutions (NaOH 수용액에 있어서 전기화화적 방전가공법에 의한 유리기판의 미세가공)

  • Hong, Seog-Woo;Che, Woo-Seong;Chio, Youngg-Kuy;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1500-1502
    • /
    • 1998
  • Electro Discharge Machining (EDM) is a so-call nonconventional machining technique. This paper presents the experimental results of an EDM technique for the fabircation of microholes on #7440 pyrex glass substrates. With various applied voltages and various concentration of NaOH or KOH solution, the glass substrates have been microdrilled using the copper electrodes of which diameters are 250 ${\mu}m$ to 450 ${\mu}m$. The machined throughholes have been observed the top diameter, the bottom diameter and machining time have been measured. EDM in NaOH solution causes the fabrication to have better the surface condition, higher selective of electrode, lower concentration of solution with respect to EDM in KOH solution machined fabrication.

  • PDF

Glass Drilling using Laser-induced Backside Wet Etching with Ultrasonic Vibration (초음파 진동과 레이저 후면 에칭을 통한 유리 구멍 가공)

  • Kim, Hye Mi;Park, Min Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2014
  • Laser beam machining has been known as efficient for glass micromachining. It is usually used the ultra-short pulsed laser which is time-consuming and uneconomic process. In order to use economic and powerful long pulsed laser, indirect processing called laser-induced backside wet etching (LIBWE) is good alternative method. In this paper, micromachining of glass using Nd:YAG laser with nanosecond pulsed beam has been attempted. In order to improve shape accuracy, combined processing with magnetic stirrer has been widely used. Magnetic stirrer acts to circulate the solution and remove the bubble but it is not suitable for deep hole machining. To get better effect, ultrasonic vibration was applied for improving shape accuracy.

Ultraprecision Machining of Glassy Carbon (Glassy Carbon의 초정밀 가공)

  • Hwang, Yeon;Lee, Hyeon-Sung;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.19-23
    • /
    • 2012
  • Glassy carbon is widely used for high temperature melting process such as quartz due to its thermal stability. For utilizing Classy Carbon to glass mold press(GMP) optical lens, brittleness of Glassy Carbon is main obstacle of ultraprecision machining. Thus authors investigated ductile machining of Glassy Carbon adopting turning and grinding process respectively. From the experiments, ultraprecision turning surfaces resulted brittle crack in all machining conditions and ultraprecision grinding surfaces showed semi-ductile mode in small undeformed chip thickness conditions.