• Title/Summary/Keyword: Glass lens Molding core

Search Result 26, Processing Time 0.025 seconds

A Study on the Molding Process of an Optical Communication Aspherical Glass Lens Using the Weight Molding Method (광통신용 비구면 글라스 렌즈 자중성형 공정 연구)

  • Ryu, Sang;Roh, Kyung Hwan;Choi, Kwang Hyeon;Kim, Won Guk;Lee, Won Kyung;Kim, Do Hee;Yang, Kuk Hyeon
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.427-432
    • /
    • 2018
  • In this study, the aspherical lens for optical communications produced not with an one-step pneumatic type of external pressurization system (existed GMP process) but a constant weight of self-loaded mold put up to upper core. So the lens is molding with self-loaded weight molding and it calls Weight Molding process. In self-loaded molding process, we measured changes of center thickness molding lenses with each variable molding temperatures and time to find the effect of center of lens thickness to search key factors. As experimental results, the center thickness reach to targeted lenses step time value was changed drastically and it depends by molding temperature. If the molding temperature gets higher, the targeted lens that is reaching to the center thickness step time value was decreased. To find the effect of life improvement on mold core by imposing the self-loaded molding process we molded with GMP(Glass molding press) method and self-loaded molding method for 9,000 times and measured the lenses shape accuracy and surface roughness to evaluate the core life. As a result the self-loaded molding method core has 2,000 times longer that GMP (Glass molding press) method. If we adopt self-loaded molding method of the optical aspherical lens molding in the future, we expect that it would reduce the expense of changing the molds by molding core life improvements.

Form Error Compensation of Aspheric lens considering Thermal Deformation on Glass Molding Press ( I ) (Glass Lens 가압성형의 열 변형에 의한 비구면 Lens 형상보정 ( I ))

  • Lee, Hak-Suk;Lee, Dong-Kil;Park, Jong-Rak;Kim, Hye-Jung;Kim, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.354-354
    • /
    • 2008
  • Recently, due to the tremendous growth of media technology, demands of the aspheric glass lens which is a high-performance and miniaturized is gradually increasing. Generally, the aspheric glass lens is manufactured by GMP(Grass Molding Press) method using WC(tungsten carbide) mold core. In this study, the thermal deformation which occurs in the cooling step of GMP was considered, and it was compensated the form of mold core. The lens which was molded by compensated mold core was satisfied that can be applied to the actual specifications.

  • PDF

A Study on Influence of PV and Ra with Re-Ir Coating of WC Core Surface for Glass Molding Lens (성형용 초경합금(WC) 코어면의 Re-Ir 코팅이 형상정도와 표면조도에 미치는 영향에 관한 연구)

  • Kim, Hyun-Uk;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.808-811
    • /
    • 2007
  • Aspheric glass lens have recently been used in camera phone module because they are more effective than spherical ones. In this paper, the grinding condition of the tungsten carbide molding core has been found after applying DOE to the development of the aspheric glass lens for the 3 Megapixel and 2.5x camera-phone module. Also, the ultra precision grinding process was investigated under this condition by experiment. Re-Ir coating was applied on the ground surface of the tungsten carbide molding core. The influence of Re-Ir coating on the form accuracy and surface roughness of molding core was compared and evaluated. The form accuracy and surface roughness of the molding core were improved by application of Re-Ir coating on the surface of the tungsten carbide molding core.

Coating Effect of Molding Core Surface by DLC and Re-Ir Coating (DLC 및 Re-Ir 코팅에 의한 성형용 코어면의 코팅 효과)

  • Kim, Hyun-Uk;Cha, Du-Hwan;Lee, Dong-Kil;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Recently, with the increasing lightness and miniaturization of high resolution camera phones, the demand for aspheric glass lens has increased because plastic and spherical lens are unable to satisfy the required performance. An aspheric glass lens is fabricated by the high temperature and pressure molding using a tungsten carbide molding core, so precision grinding and coating technology for the molding core surface are required. This study investigates the effect of diamond-like carbon (DLC) and rhenium-iridium (Re-Ir) coating For aspheric molding core surface. The grinding conditions of the tungsten carbide molding core were obtained by design of experiments (DOE) for application in the ultra precision grinding process of the tungsten carbide molding core of the aspheric glass lens used in 5 megapixel, $4{\times}$ zoom camera phone modules. A tungsten carbide molding core was fabricated under this grinding condition and coated with the DLC and Re-Ir coating. By measurements, the effect of DLC and Re-Ir coating on the form accuracy and surface roughness of molding coer was evaluated.

The property of WC(Co 0.5%) ultra precision turning for optical pick-up objective lens molding press for optical infomation storing(I) (광정보저장용 광픽업 대물렌즈 성형용 초경합금 (Co 0.5%) 초정밀절삭 특성(I))

  • Kim, Min-Jae;Lee, Jun-Key;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.178-178
    • /
    • 2009
  • High-density optical information storing equipment, which is using Blu-ray, is the next generation information storing equipment that has about form six times to thirty-five times capacities. and high-density optical information storing equipment uses high NA(Numerical Aperture) aspheric glass objective lens as optical pick-up equipment to record and recognize high-density date. Generally this objective lens is developed and produced through a way of GMP(Glass Molding Press) that uses molding core that is performde by Ultra precision grinding, but grinding performing that has high-accuracy is very difficult because objective lens form is high NA. In this research, we preformed Ultra precision turning, using single crystal diamond bite, about WC(Co 0.5%), sintering brittleness material that is used molding core's material for GMP. and we confirmed aspheric glass lens compression of deformities molding core's Ultra precision turning possibility by measuring surface roughness(Ra) and processing surface's condition.

  • PDF

Compression Molding of Diffractive-Aspheric Lenses Using Chalcogenide Glasses (칼코겐유리를 활용한 회절비구면렌즈 압축성형)

  • Kim, Ji-Kwan;Choi, Young-Soo;Ahn, Jun-Hyung;Son, Byeong-Rea;Hwang, Young-Kug
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.43-48
    • /
    • 2020
  • This study explores the compression molding of diffractive-aspheric lenses using GeSbSe chalcogenide glasses. A mold core with diffractive structure was prepared and a chalcogenide glass lens was molded at various temperatures using the corresponding core. The effect of molding temperature on the transcription characteristics of diffractive structure was examined, by measuring and comparing the diffractive structure between the mold core and the molded chalcogenide glass lens using a microscope and a white light interferometer. In addition, the applicability of the molded lens for thermal imaging was evaluated, by measuring the form error.

A study of glass molding the micro Blu-ray pick-up lens (초소형 블루레이 광 팍업 렌즈의 유리 성형에 관한 연구)

  • Park, S.S.;Lee, K.Y.;Kim, H.M.;Hwang, Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.164-167
    • /
    • 2006
  • Micro lens especially for optical pick up(Blu-ray) lens module is one of the key products for IT technology. Specific attention has been given to manufacturing of large radius lens but little to small radius less than 2mm diameter with N.A>0.8. This paper deals with a high precision glass molding technology for mass production of Blu-ray pick up lens. Ultra precisely machined tungsten carbide core and glass molding equipments are utilized for forming process. Evaluation was performed in terms of profile accuracy, surface roughness and thickness of fabricated glass lens.

  • PDF

Re-Ir Coating Effect of WC Core Surface for Aspheric Glass Lens Molding (비구면 Glass 렌즈 성형용 초경합금 코어면 Re-Ir 코팅 효과)

  • Kim, Hyun-Uk;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.441-441
    • /
    • 2007
  • As Rhenium-Iridium{Re-Ir) coating possesses such features as, high hardness, high elasticity, abrasion resistance and chemical stability, there have been exerted continuous efforts in research works in a variety of fields, and this technology has also been applied widely to industrial areas. In this research, the optimal grinding condition was identified using Microlens Process Machine in order to contribute to the development of aspheric glass lens for mobile phone module having 3 mega pixel and 2.5X zoom, and molding core(WC) was manufactured having performed ultra-precision machining. Effects of Re-Ir coating on form accuracy (P-V) of molding core and surface roughness(Ra) were measured and evaluated.

  • PDF

A Study on Ultra Precision Grinding of Silicon Carbide Molding Core for High Pixel Camera Phone Module (고화소 카메라폰 모듈을 위한 Glass 렌즈 성형용 Silicon Carbide 코어의 초정밀 가공에 관한 연구)

  • Kim, Hyun-Uk;Kim, Jeong-Ho;Ohmori, Hitoshi;Kwak, Tae-Soo;Jeong, Shang-Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.117-122
    • /
    • 2010
  • Recently, aspheric glass lens molding core is fabricated with tungsten carbide(WC). If molding core is fabricated with silicon carbide(SiC), SiC coating process, which must be carried out before the Diamond-Like Carbon(DLC) coating can be eliminated and thus, manufacturing time and cost can be reduced. Diamond Like Carbon(DLC) is being researched in various fields because of its high hardness, high elasticity, high durability, and chemical stability and is used extensively in several industrial fields. Especially, the DLC coating of the molding core surface used in the fabrication of a glass lens is an important technical field, which affects the improvement of the demolding performance between the lens and molding core during the molding process and the molding core lifetime. Because SiC is a material of high hardness and high brittleness, it can crack or chip during grinding. It is, however, widely used in many fields because of its superior mechanical properties. In this paper, the grinding condition for silicon carbide(SiC) was developed under the grinding condition of tungsten carbide. A silicon carbide molding core was fabricated under this grinding condition. The measurement results of the SiC molding core were as follows: PV of 0.155 ${\mu}m$(apheric surface) and 0.094 ${\mu}m$(plane surface), Ra of 5.3 nm(aspheric surface) and 5.5 nm(plane surface).

Study on Ultra-Precision Grinding Processing for Aspheric Glass Array Lens WC Core (비구면 유리 어레이 렌즈 성형용 초경합금 코어 초정밀 연삭 가공에 관한 연구)

  • Ko, Myeong Jin;Park, Soon Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.893-898
    • /
    • 2016
  • Plastic array lens are cheap to manufacture; however, plastic is not resistant to high temperatures and moisture. Optical glass represents a better solution but is a more-expensive alternative. Glass array lens can be produced using lithography or precision-molding techniques. The lithography process is commonly used, for instance, in the semiconductor industry; however, the manufacturing costs are high, the processing time is quite long, and spherical aberration is a problem. To obtain high-order aspherical shapes, mold-core manufacturing is conducted through ultra-precision grinding machining. In this paper, a $4{\times}1$ mold core was manufactured using an ultra-precision machine with a jig for the injection molding of an aspherical array lens. The machined mold core was measured using the Form TalySurf PGI 2+ contact-stylus profilometer. The measurement data of the mold core are suitable for the design criterion of below 0.5 um.