• Title/Summary/Keyword: Glass layer

Search Result 1,325, Processing Time 0.033 seconds

Chemical and Microstructural Changes at Interfaces between $ZrO_2.SiO_2$ Glass Fibers Prepared by Sol-Gel Method and Cement Matrices

  • Shin, Dae-Yong;Han, Sang-Mok
    • The Korean Journal of Ceramics
    • /
    • v.1 no.3
    • /
    • pp.160-164
    • /
    • 1995
  • Mechanical and chemical tests were performed on $Zro_2 \cdot SiO_2$ glass fibers manufactured by the sol-gel method and E-glass fibers-reinforced cement composites in order to investigate the interactions between glass fibers and cement matrices. Chemical attack leads to corrosion of the glass fiber surfaces. In the corrosion reactions, the surface of $30ZrO_2 \cdot 70 SiO_2$ glass fibers developed a densified concentric layer, which consists of glass corrosion products with much higher Zr and lower Si than the fresh glass fiber. The layer of reaction product is regarded to stiffen the cement matrices and provide a useful improvement to the mechanical properties. The addition of $ZrO_2$ content increases the corrosion resistance of glass fibers in cement by forming a passivating layer on the surface of glass fibers.

  • PDF

Reducing the Reflection Cracks of the Pavement using Glass Fiber Grids (유리섬유 그리드를 이용한 포장면 반사균열 억제)

  • 조성민;엄주용;이석근;김광우;전한용;장용채
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.35-38
    • /
    • 2000
  • Reflection cracks can be occurred in the asphalt layer overlaid on portland cement concrete pavements, because this layer is sensitive to environmental conditions including temperature changes and displacements of the pavement. A result of trial applications using glass fiber grids is introduced in this paper. Glass fiber grids were used between the asphalt layer and the concrete base to reduce the reflection crack of the asphalt layer. No cracks were observed in the glass grid installed area about 2 years later from trial constructions.

  • PDF

Zinc Borosilicate Thick Films as a Ag-Protective Layer for Dye-Sensitized Solar Cells

  • Yeon, Deuk-Ho;Lee, Eun-Young;Kim, Kyung-Gon;Park, Nam-Gyu;Cho, Yong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.313-316
    • /
    • 2009
  • A zinc borosilicate glass having a low softening temperature of $490^{\circ}C$ has been investigated as a protective layer for Ag patterns against chemical reactions with a $I^-/I_3^-$ electrolyte in dye-sensitized solar cells (DSSCs). A thick glass layer was prepared by the typical screen printing and firing processes to obtain a final thickness of ${\sim}5{\mu}m$. The chemical leaching performance of the glass layer in the electrolyte revealed that the reactive Ag pattern can be significantly protected by utilizing the low softening protective layer. The electrical resistance of the FTO-coated glass substrate was effectively maintained at a low value of ${\sim}27{\Omega}$ as long as the glass layer was well densified at a sufficiently high temperature of ${\sim}520^{\circ}C$. The transmittance of the layer was near 60%, depending on the firing temperature of the glass layer.

결정질 실리콘 태양전지의 전면 은 전극의 소성 후 glass layer 두께와 접촉 저항 사이의 관계

  • Kim, Seong-Tak;Park, Seong-Eun;Bae, Su-Hyeon;Kim, Chan-Seok;Kim, Yeong-Do;Tak, Seong-Ju;Kim, Dong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.101.2-101.2
    • /
    • 2012
  • 스크린 프린팅 기술은 공정이 단순하고 값이 싸며 대량생산에 용이하기 때문에 결정질 실리콘 태양전지의 전극형성에 널리 사용되고 있다. 스크린 프린팅 기술을 이용한 전면 전극은 일반적으로 은 페이스트 (Ag paste)를 패시배이션 층이 증착 된 실리콘 기판 위에 인쇄를 한 후 고온의 소성 공정을 통하여 형성이 된다. 은 페이스트가 실리콘 에미터 층과 접촉하기 위해서는 패시배이션 층을 뚫고 접촉이 형성 되어야 한다. 이 과정에서 소성 후 은 전극과 실리콘 기판 사이의 계면에는 glass layer가 형성되어 접촉저항을 높이고 태양전지의 직렬 저항을 높이는 인자로 작용한다. 따라서 본 연구는 형성된 은 전극과 실리콘 사이의 계면 특성을 평가하고 glass layer의 두께와 접촉 저항 사이의 관계를 분석하기 위해서 진행되었다. 접촉저항은 trasnfer length method (TLM) 법을 이용하여 측정을 하였고 glass layer의 두께는 field emission scanning electron microscope(FE-SEM)을 이용하여 평가하였다. 또한 glass layer의 두께에 따른 전반적인 태양전지의 특성을 solar simulator, probe station, suns-Voc를 통하여 평가하였다. 결과적으로 glass layer의 두께에 따라서 접촉저항이나 직렬저항이 변화하는 것을 관찰 할 수 있었고 이를 정량적으로 분석하고자 하는 노력이 시도되었다. 이러한 변화는 또한 태양전지의 특성에 영향을 미치는 것을 확인할 수 있었다.

  • PDF

Surface Fracture Behaviors of Unidirectional and Cross Ply Glass Fiber/Epoxy Lamina-Coated Glass Plates under a Small-Diameter Steel Ball Impact (일방향 및 직교형 유리섬유/에폭시 복합재로 피막된 판유리의 미소강구 충격에 의한 표면파괴거동)

  • Chang, Jae-Young;Choi, Nak-Sam
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.33-40
    • /
    • 2009
  • Fiber orientation effects on the impact surface fracture of the glass plates coated with the glass fiber/epoxy lamina layer were investigated using a small-diameter steel-ball impact experiment. Four kinds of materials were used: soda-lime glass plates, unidirectional glass fiber/epoxy layer(one ply, two plies)-coated, crossed glass tiber/epoxy layer (two plies)-coated glass plates. The maximum stress and absorbed fracture energy were measured on the back surface of glass plates during the impact. With increasing impact velocity, various surface cracks such as ring, cone, radial and lateral cracks appeared near the impacted site of glass plates. Cracks in the plate drastically diminished by glass fiber coating. The tiber orientation guided the directions of delamination and plastic deformation zones between the tiber layer and the glass plate. Impact surface-fracture indices expressed in terms of the maximum stress and absorbed energy could be used as an effective evaluation parameter of the surface resistance.

Temperature Distribution According to the Structure of a Conductive Layer during Joule-heating Induced Encapsulation for Fabrication of OLED Devices (OLED 소자 제조를 위한 주울 가열 봉지 공정 시 도전층 구조에 따르는 열분포)

  • Jang, Ingoo;Ro, Jae-Sang
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.162-167
    • /
    • 2013
  • Encapsulation is required since organic materials used in OLED devices are fragile to water vapor and oxygen. Laser sealing method is currently used where IR laser is scanned along the glass-frit coated lines. Laser method is, however, not suitable to encapsulating large-sized glass substrate due to the nature of sequential scanning. In this work we propose a new method of encapsulation using Joule heating. Conductive layer is patterned along the sealing lines on which the glass frit is screen printed and sintered. Electric field is then applied to the conductive layer resulting in bonding both the panel glass and the encapsulation glass by melting glass-frit. In order to obtain uniform bonding the temperature of a conductive layer having a shape of closed loop should be uniform. In this work we conducted simulation for heat distribution according to the structure of a conductive layer used as a Joule-heat source. Uniform temperature was obtained with an error of 5% by optimizing the structure of a conductive layer. Based on the results of thermal simulations we concluded that Joule-heating induced encapsulation would be a good candidate for encapsulation method especially for large area glass substrate.

Structural Evaluation of Glass-fiber Reinforced 3-Layer Polymer Composite Pipe (GFRP 보강 폴리머 모르터 3중복합관의 구조적 특성)

  • Yeon, Kyu-Seok;Kwon, Yoon-Hwan;Ryu, Keun-Woo;Jin, Nan-Ji
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.147-151
    • /
    • 2001
  • This study was performed to evaluate the internal and external factors affecting external strength of the 3-layer polymer composite pipes made of polymer mortar and fiber-glass reinforced plastic. Twenty four sandwich type 3-layer polymer composite pipes were made of polymer mortar and fiber-glass reinforced plastic by centrifugal method. The objective of this study was to evaluate the effects the of polymer mortar thickness for and core fiber-glass contents per unit area on external strength of 3-layer polymer composite pipes. For the more economical and practical design of 3-layer polymer composite pipe, further study should be done for the various polymer mortar, fiber-glass and different ratio of the inside/outside FRP thickness.

  • PDF

ANODICALLY-BONDED INTERFACE OF GLASS TO ALUMINIUM

  • Takahashi, Makoto;Nishikawa, Satoru;Chen, Zheng;Ikeuchi, Kenji
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.65-69
    • /
    • 2002
  • An Al film deposited on the Kovar alloy substrate was anodically-bonded to the borosilicate glass, and the bond interfaces was closely investigated by transmission electron microscopy. Al oxide was found to form a layer ~l0 nm thick at the bond interface, and fibrous structure of the same oxide was found to grow epitaxially in the glass from the oxide layer. The fibrous structure grew with the bonding time. The mechanism of the formation of this fibrous structure is proposed on the basis of the migration of Al ions under the electric field. Penetration of Al into glass beyond the interfacial Al oxide was not detected. The comparison of the amount of excess oxygen ions generated in the alkali depletion layer with that incorporated in the Al oxide suggests that the growth of the alkali-ion depletion layer is controlled by the consumption of excess oxygen to form the interfacial Al oxide.

  • PDF

Dielectric Properties of $BaTiO_3$ Layer with Zero Shrinkage By Glass Infiltration (Glass Infiltration에 의한 무수축 $BaTiO_3$ Layer의 유전특성)

  • Jang, Ui-kyeong;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.271-271
    • /
    • 2007
  • LTCC 소재는 glass/ceramic composite로 구성된다. LTCC 소재에 embedding 되는 고유전율 소재 또한 이와 같은 소재설계를 통하여 무수축 접합이 가능할 것으로 판단된다. 그러나 이에 대한 연구결과가 보고된바 없고 몇몇 $Al_2O_3$의 infiltration에 대한 무수축 소성 관련 선행 연구를 바탕으로 고유전율 소재인 $BaTiO_3$의 무수축 소성이 연구되는 것이 필요한 시점이다. 따라서 본 연구는 저온에서의 glass infiltration에 의한 무수축 $BaTiO_3$ layer의 저온소성특성 및 유전특성을 평가하였다. 실험결과 $785^{\circ}C$에서 glass의 충분한 침투가 확인되며 결정구조에서는 glass/$BaTiO_3$ composite이 형성되었다. 무수축 접합 layer의 소성조건과 glass 두께 변화에 따른 유전특성 및 layer의 결정구조를 비교평가 하였다.

  • PDF

Hydroxyapatite Formation on Fluoride Bioactive Glasses coated on Alumina (알루미나에 코팅된 불화물 생체유리에의 수산화 아파타이트 형성)

  • 안현수;이은성;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1087-1093
    • /
    • 1999
  • Bioglass which is one of the surface active bionmaterials has a good biocompatibility but a poor mechanical strength, In the present work therefore two types of fluoride-containing bioglasses were coated on an alumina to improve mechanical strength. Crystallization of the coating layer and the hydroxyapatite formation on the bioactive glass coatings in tris-buffer solution were studied. When bioactive glass coated alumina was heat-treated Na2CaSi3O8 crystal was formed on the layer at lower temperature while wollastonite(CaSIO3) was obtained at higher temperature. Hydroxyapatite forming rate on the coating layer with Na2CaSi3O8 crystal was delayed with SiO2 contents in glass composition. However the hydroxyapatite was developed in 20minutes regardless SiO2 contents when the coating layer crystallized into wollastonite. More amount of P3+ ions were leached out of the coating layer with wollastonite than that with Na2CaSi3O8 crystal while Na+ and Ca2+ ions were leached out more easily from the Na2CaSi3O8 crystal containing coating layer.

  • PDF