• Title/Summary/Keyword: Glass fibers

Search Result 355, Processing Time 0.03 seconds

Size Distribution of Airborne Fibers in Man-made Mineral Fiber Industries (인조광물섬유 산업에서 발생된 공기중 섬유의 크기 분포)

  • Shin, Yong Chul;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.213-220
    • /
    • 2005
  • Penetration and health effect of fibers was related with their diameters and length. The purpose of this study is to characterize and compare the diameter and length of airborne man-made mineral fibers(MMMF) or synthetic vitreous fibers in the related industries. The average fiber length of the continuous filament glass, rock wool, refractory ceramic, and glass wool fibers production industries approximately 27, 28, 35, $50-105{\mu}m$. Airborne glass fibers were longest in all the type of MMMFs. The average diameters of airborne fibers generated from refractory ceramic, rock wool, glass wool, continuous filament glass fibers production industries were approximately 1.0, 1.6, 1.5-4 and $10{\mu}m$, respectively. The percentages of respirable fibers(<$3{\mu}m$) were 94% for RCFs, 73% for rock wool fibers, 61.0% for glass fibers, and 1.6% for filament glass fibers. The length of glass fibers were the longest in all types of fibers, and length of the others were similar. The refractory ceramic fibers were smallest in diameters and highest in fraction of respirable fibers.

Chemical and Microstructural Changes at Interfaces between $ZrO_2.SiO_2$ Glass Fibers Prepared by Sol-Gel Method and Cement Matrices

  • Shin, Dae-Yong;Han, Sang-Mok
    • The Korean Journal of Ceramics
    • /
    • v.1 no.3
    • /
    • pp.160-164
    • /
    • 1995
  • Mechanical and chemical tests were performed on $Zro_2 \cdot SiO_2$ glass fibers manufactured by the sol-gel method and E-glass fibers-reinforced cement composites in order to investigate the interactions between glass fibers and cement matrices. Chemical attack leads to corrosion of the glass fiber surfaces. In the corrosion reactions, the surface of $30ZrO_2 \cdot 70 SiO_2$ glass fibers developed a densified concentric layer, which consists of glass corrosion products with much higher Zr and lower Si than the fresh glass fiber. The layer of reaction product is regarded to stiffen the cement matrices and provide a useful improvement to the mechanical properties. The addition of $ZrO_2$ content increases the corrosion resistance of glass fibers in cement by forming a passivating layer on the surface of glass fibers.

  • PDF

Histopathological Changes of Subcutaneous Exposure to Glass Fibers in Rats (흰쥐에서 유리섬유의 피하삽입에 의한 경시적 병리조직학적 변화)

  • Lee, Min-Jae;Cho, Soo-Hun;Jang, Ja-June
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.1 s.56
    • /
    • pp.69-76
    • /
    • 1997
  • To exanime in vivo tissue reactions of glass fibers, we injected glass fibers to rats subcutaneously. We made fibers of average dimensions of approximately $2{\mu}m$ in diameter and $60{\mu}m$ in length. After instilation of glass fiber we sacrificed rats sequentially at 1, 3 and 6 months. At 1 month after injection of glass fibers, the exposure area turned to yellow color and formed well-demarcated round mass. The average size of the mass was $1\times0.3cm$. Grossly detectable mass was decreased in size at 6 months compared to 1 or 3 months. Microscopically, strong foreign body reaction to glass fibers, inflammation and fibrosis were observed until 6 months. Foreign body reaction was increased up to 3 months, but it was decreased after 6 months. In scanning electron microscope, there was many bundles of glass fibers around the inflammation area, but the size of glass fibers were gradually reduced from 1 month to 6 months. These results suggest that subcutaneous exposure of glass fiber can provoke strong tissue reaction including foreign body granulomas, inflammation and fibrosis. But glass fiber itself did not produce any neoplastic changes.

  • PDF

Workers' Exposure to Airborne Fibers in the Man-made Mineral Fibers Producing and Using Industries (인조광물섬유 제품 제조 및 취급 근로자의 공기중 섬유 노출 평가 및 노동부 노출기준 고찰)

  • Shin, Yong Chul;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.221-231
    • /
    • 2005
  • In this study, occupational exposures to man-made mineral fibers (MMMFs) including glass wool, rock wool, and continuous glass filament fibers were determined and evaluated on the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV). A total of 171 personal samples collected from 4 glass wool fiber, 2 rock wool fibers, 4 continuous filament glass fiber products manufacturing and a glass fiber and rock wool insulations using industries, and determined respirable fibers concentrations using the National Institute for Occupational Safety and Health (NIOSH) Method 7400, "B counting rule. The fiber concentrations of samples from workers installing thermal insulations in a MMMF using industry showed the highest value: geometric mean (GM) = 0.73 f/cc and maximum = 2.9 f/cc, 70% of them were above the TLV, 1 f/cc. Workers' exposure level (GM= 0.032 f/cc) in the rock wool manufacturing industries was significantly higher than those of glass wool (GM=0.012 f/cc) and continuous filament glass fibers (GM=0.010 f/cc) manufacturing industries (p<0.01). No samples were more than the TLV in the MMMF manufacturing industries. There was a significant difference among companies in airborne fiber levels.

EFFECTS OF CHOPPED GLASS FIBER ON THE STRENGTH OF HEAT-CURED PMMA RESIN

  • Lee Sang-Il;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.589-598
    • /
    • 2001
  • The fracture of acrylic resin dentures remains an unsolved problem. Therefore, many investigations have been performed and various approaches to strengthening acrylic resin, for example, the reinforcement of heat-cured PMMA resin using glass fibers, have been suggested over the years. The aim of the present study was to investigate the effect of short glass fibers treated with silane coupling agent on the transverse strength of heat-polymerized PMMA denture base resin. To avoid fiber bunching and achieve even fiber distribution, glass fiber bundles were mixed with PMMA powder in conventional mixer whose blade was modified to be blunt. Composite of glass fiber($11{\mu}m$ diameter, 3mm & 6mm length, silane treated) and PMMA resin was made. Transverse strength and Young's modulus were estimated. Glass fibers were incorporated with 1%, 3%, 6% and 9% by weight. Plasticity and workability of dough was evaluated. Fracture surface of specimens was investigated by SEM. The results of this study were as follows 1. 6% and 9% incorporation of 3mm glass fibers in the PMMA resin enhanced the transverse strength of the test specimens(p<0.05). 2. 6% incorporation of 6mm glass fibers in the PMMA resin increased transverse strength, but 9% incorporation of it decreased transverse strength(p<0.05). 3. When more than 3% of 3mm glass fibers and more than 6% of 6mm glass fibers were incorporated, Young's modulus increased significantly(p<0.05). 4. Workability decreased gradually as the percentage of the fibers increased. 5. Workability decreased gradually as the length of the fibers increased. 6. In SEM and LM, there was no bunching of fibers and no shortening of fibers.

  • PDF

Comparison of NIOSH Method 7400 A and B Counting Rules for Airborne Man-Made Vitreous Fibers (인조광물섬유에 대한 NIOSH 7400 방법의 A 및 B 계수규칙비교)

  • Sin, Yong Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 2006
  • There are many counting rules for analyzing man-made mineral fibers. The representatives are the NIOSH Method 7400 A and B counting rules. The two rules have different rules of length-to-width ratio(aspect ratio) and diameter. The A rule counts only fibers $>5{\mu}m$ in length, and only fibers with aspect ratio >3:1. The B rule counts only ends of fibers $>5{\mu}m$ in length and $<3{\mu}m$ in diameter, and only fibers with aspect ratio ${\geq}5:1$. The A counting rule had been used before the B counting rule was introduced. The purpose of this study is to compare the A and B counting rules for airborne fibers from various man-made mineral fibers(glass wool fibers, rock wool fibers, refractory ceramic fibers, and continuous filament glass fibers) industries. There were significantly differences between the paired counts of A and B rules in all types of fibers(p<0.05). A rule counts/B rule counts(A/B ratios) were 1.52 for glass fibers, 1.53 for rock wool fibers, 1.19 for RCF, and 1.82 for continuous filament glass fibers. The counting results by A and B counting rules were highly correlated in glass wool fibers, rock wool fibers and refractory ceramic fibers(RCF) samples (r=0.96 for all types of fibers) except continuous filament glass fibers(r=0.82). Regression equations to correct for the differences between counting rules were presented in this paper.

Mechanical and fracture properties of glass fiber reinforced geopolymer concrete

  • Midhuna, M.S.;Gunneswara Rao, T.D.;Chaitanya Srikrishna, T.
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.29-45
    • /
    • 2018
  • This paper investigates the effect of inclusion of glass fibers on mechanical and fracture properties of binary blend geopolymer concrete produced by using fly ash and ground granulated blast furnace slag. To study the effect of glass fibers, the mix design parameters like binder content, alkaline solution/binder ratio, sodium hydroxide concentration and aggregate grading were kept constant. Four different volume fractions (0.1%, 0.2%, 0.3% and 0.4%) and two different lengths (6 mm, 13 mm) of glass fibers were considered in the present study. Three different notch-depth ratios (0.1, 0.2, and 0.3) were considered for determining the fracture properties. The test results indicated that the addition of glass fibers improved the flexural strength, split tensile strength, fracture energy, critical stress intensity factor and critical crack mouth opening displacement of geopolymer concrete. 13 mm fibers are found to be more effective than 6 mm fibers and the optimum dosage of glass fibers was found to be 0.3% (by volume of concrete). The study shows the enormous potential of glass fiber reinforced geopolymer concrete in structural applications.

Experimental investigating the properties of fiber reinforced concrete by combining different fibers

  • Ghamari, Ali;Kurdi, Javad;Shemirani, Alireza Bagher;Haeri, Hadi
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.509-516
    • /
    • 2020
  • Adding fibers improves concrete performance in respect of strength and plasticity. There are numerous fibers for use in concrete that have different mechanical properties, and their combination in concrete changes its behavior. So, to investigate the behavior of the fiber reinforced concrete, an in vitro study was conducted on concrete with different fiber compositions including different ratios of steel, polypropylene and glass fibers with the volume of 1%. Two forms of fibers including single-stranded and aggregated fibers have been used for testing, and the specimens were tested for compressive strength and dividable tensile strength (splitting tensile) to determine the optimal ratio of the composition of fibers in the concrete reinforced by hybrid fibers. The results show that the concrete with a composition of steel fibers has a better performance than other compounds. In addition, by adding glass and propylene fibers to the composition of steel fibers, the strength of the samples is reduced. Also, if using the combination of fibers is required, the use of a combination of glass fibers with steel fibers will provide a better compressive strength and tensile strength than the combination of steel fibers with propylene.

Characterization and Evaluation of Worker s Exposure to Airborne Glass Fibers in Glass Wool Manufacturing Industry (유리섬유 단열재 제조업 근로자의 공기중 유리섬유 폭로 특성 및 평가 방법에 관한 연구)

  • 신용철;이광용;박천재;이나루;정동인;오세민
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.2
    • /
    • pp.43-57
    • /
    • 1996
  • To characterize worker's exposure to glass fibers, to find the correlation between airborne total dust concentrations and fiber concentrations and to recommend an appropriate evaluation method for worker's exposure to fibrous dusts in glass wool industry, we carried out this study. Average respirable fiber levels at five factories were 0.013-0.056 f/cc, and fairly below the OSHA PEL, 1 f/cc. A factory showed the lowest airborne fiber level, 0.013 f/cc, which was different significantly from those of other factories of which average fiber concentration was 0.046 f/cc. The cutting and grinding operations of insulation products resulted in higher airborne fiber cocentrations than any other processes(p<0.05). To characterize airborne fiber dimension, fiber length and diamter were determined using phase contrast microscope. The geometric means of airborne fiber lengths were $42-105 \mu m$. One factory had airborne fibers whose length distribution(GM = $105 \mu m$) was different from those of other factories(GM = $42-50 \mu m$). The percentages of respirable fibers less thinner than 3 gm were 38.9-90.9% at four factories, and two factories of them had the higher percentages than others. The findings explain for variation of airborne fiber diameters between factories. On the other hand, between the processes were the difference of fiber-length distributions observed. The cutting and grinding operations showed shorter fiber-length distributions than the fiber forming one. However, fiber-diameter distributions or respirable fiber contents were similar in all processes. The airborne fiber concentrations and the dust concentrations had relatively weak correlation(r=0.25), thus number of fibers couldn't be expected reliably from dust amount. Fiber count is appropriate for assessing accurate exposures and health effects caused by fibrous dusts including glass fibers. Ministry of Labor have established occupational exposure limit to glass fibers as nuisiance dust, but should establish it on the basis of respirable fiber concentration to provide adequate protection for worker's health

  • PDF

Preparation and Characterization of Highly Conductive Nickel-coated Glass Fibers

  • Kim, Byung-Joo;Choi, Woong-Ki;Song, Heung-Sub;Park, Jong-Kyoo;Lee, Jae-Yeol;Park, Soo-Jin
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.105-107
    • /
    • 2008
  • In this work, we employed an electroless nickel plating on glass fibers in order to enhance the electric conductivity of fibers. And the effects of metal content and plating time on the conductivity of fibers were investigated. From the results, island-like metal clusters were found on the fiber surfaces in initial plating state, and perfect metallic layers were observed after 10 min of plating time. The thickness of metallic layers on fiber surfaces was proportion to plating time, and the electric conductivity showed similar trends. The nickel cluster sizes on fibers decreased with increasing plating time, indicating that surface energetics of the fibers could become more homogeneous and make well-packed metallic layers, resulting in the high conductivity of Ni/glass fibers.