• Title/Summary/Keyword: Glass Thickness

Search Result 1,082, Processing Time 0.029 seconds

Improvement of CMP and Cleaning Process of Large Size OLED LTPS Thin Film Using Oscar Type Polisher (Oscar형 연마기를 이용한 대면적 OLED용 LTPS 박막의 CMP 처리 및 세정 공정 개선)

  • Shim, Gowoon;Lee, Hyuntaek;Song, Jongkook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.71-76
    • /
    • 2022
  • We evaluated and developed a 6th generation large-size polisher in the type of face-up and Oscar. We removed the hillocks of the low temperature poly-silicon (LTPS) thin film with this polisher. The surface roughness of LTPS was lowered from 7.9 nm to 0.6 nm after CMP(chemical mechanical polishing). The thickness of the LTPS is measured through reflectance in real time during polishing, and the polishing process is completed according to this thickness. The within glass non-uniformity (WIGNU) was 6.2% and the glass-to-glass non-uniformity (GTGNU) was 2.5%, targeting the LTPS thickness of 400Å. In addition, the residual slurry after the CMP process was removed through the Core Flow PVA Brush and alkaline chemical.

Development of Thin and Lightweight Bulletproof Windows Using Strengthened SLS Glass by Ion Exchange

  • Shim, Gyu-In;Kim, Seong-Hwan;Ahn, Deok-Lae;Park, Jong-Kyoo;Choi, Se-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.123-127
    • /
    • 2015
  • Soda-lime silicate (SLS) glass was strengthened by ion exchange for application of thin and lightweight bulletproof windows. The optimal conditions for ion exchanged SLS glass (thickness of 3 and 10 mm) at $480^{\circ}C$ were 10 and 17 min, respectively. The Vickers hardness values of the strengthened SLS glass samples with thicknesses of 3 and 10 mm were $5.9{\pm}0.22$ and $6.7{\pm}0.17GPa$, respectively, which values were about 22% higher than those of parent SLS glass. By laminating a multilayer defense film and polycarbonate sheet with ion exchanged SLS glass, we were able to make a thin and lightweight bulletproof window (24.25 mm, 4.57 kg, $50.06kg/m^2$, $V_{50}$ 901.8 m/s). As a result, the thickness of the bulletproof window was decreased by about 39% from 40 to 24.25 mm. The light transmittance in the visible range satisfied the standard (over 76%) for bulletproof windows.

Shadow Modeling using Z-map Algorithm for Process Simulation of OLED Evaporation

  • Lee, Eung-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.487-490
    • /
    • 2004
  • In order to simulate OLED evaporation process, modeling of directional distribution of the vaporized organic materials, film thickness distribution profile and pattern-mask shadow effect are required In accordance with many literatures; all of them except shadow effect modeling are studied and developed. In this paper, modeling algorithm of evaporation shadow is presented for process simulation of full-color OLED evaporating system. In OLED evaporating process the offset position of the point cell-source against the substrate rotation axis and the usage of the patterned mask are the principal causes for evaporation shadow. For geometric simulation of shadow using z-map, the film thickness profile, which is condensed on a glass substrate, is converted to the z-map data. In practical evaporation process, the glass substrate is rotated. This physical fact is solved and modeled mathematically for z-map simulation. After simulating the evaporation process, the z-map data can present the shadow-effected film thickness profile. Z-map is an efficient method in that the cross-sectional presentations of the film thickness profile and thickness distribution evaluation are easily and rapidly achieved.

  • PDF

A Study for Joining of Silicon Nitride with Crystallized Glass Solder of $SiO_2-Al_2O_3-MgO$ System ($SiO_2-Al_2O_3-MgO$계 결정화 유리 솔더에 의한 질화규소의 접합에 관한 연구)

  • 안병국
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.107-113
    • /
    • 2003
  • Joining of $Si_3N_4$ to $Si_3N_4$ with crystallized glass solder was studied. $SiO_2-Al_2O_3-MgO$ glass with $P_2O_5$ as a crystallizing reagent was used as a solder. To improve the hish temperature toughness of joined specimen, two stage heat treatment was applied to Joined sample for the crystallization of joined layer, Two factors, i.e. thickness of soldered layer and crystallization were taken and thier effects on joining strength were investigated by a SEM-EDX observation of joined interface and bending strength both at room and elevated temperatures. Obtained results are summarized as follows: (1) Nitrogen diffused from $Si_3N_4$ to solder during the Joining process. Average amount of nitrogen in soldered layer depended on the thickness of the soldered layer and increased with decrease of the thickness. (2) Joining strength of the specimen having a thinner soldered layer was stronger than that of thicker layer. This can be mainly attributed to the difference of the nitrogen content in the soldered layer. (3) Higher content of nitrogen in solder brought forth higher viscosity of the solder. Hence the crystallization of the solder become more difficult in thinner layer of the solder than thicker one. (4) Thus, the effect of crystallization was evaluated mostly by the thicker layer specimen. Crystallization of soldered layer improved markedly the fracure strength of joining at higher temperatures than the softening temperature of glass solder.

A Study on the Molding Process of an Optical Communication Aspherical Glass Lens Using the Weight Molding Method (광통신용 비구면 글라스 렌즈 자중성형 공정 연구)

  • Ryu, Sang;Roh, Kyung Hwan;Choi, Kwang Hyeon;Kim, Won Guk;Lee, Won Kyung;Kim, Do Hee;Yang, Kuk Hyeon
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.427-432
    • /
    • 2018
  • In this study, the aspherical lens for optical communications produced not with an one-step pneumatic type of external pressurization system (existed GMP process) but a constant weight of self-loaded mold put up to upper core. So the lens is molding with self-loaded weight molding and it calls Weight Molding process. In self-loaded molding process, we measured changes of center thickness molding lenses with each variable molding temperatures and time to find the effect of center of lens thickness to search key factors. As experimental results, the center thickness reach to targeted lenses step time value was changed drastically and it depends by molding temperature. If the molding temperature gets higher, the targeted lens that is reaching to the center thickness step time value was decreased. To find the effect of life improvement on mold core by imposing the self-loaded molding process we molded with GMP(Glass molding press) method and self-loaded molding method for 9,000 times and measured the lenses shape accuracy and surface roughness to evaluate the core life. As a result the self-loaded molding method core has 2,000 times longer that GMP (Glass molding press) method. If we adopt self-loaded molding method of the optical aspherical lens molding in the future, we expect that it would reduce the expense of changing the molds by molding core life improvements.

Quality Management of ITO Thin Film for OLED Based on Relationship of Fabrication and Characteristics (OLED용 ITO박막의 공정조건과 품질특성 추론에 근거한 품질관리)

  • Seo, Jeong-Min;Park, Keun-Young;Lee, Sang-Ryong;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.336-341
    • /
    • 2008
  • Recently, research on a flat panel display(FPD) has focused on organic light-emitting display(OLED) which has wide angle of view, high contrast ratio and low power consumption. ITO(Indium-Tin-Oxide) films are the most widely used material as a transparent electrode of OLED and also in many other display devices like LCD or PDP. The performance and efficiency of OLED is related to the surface condition of ITO coated glass substrate. The typical surface defect of glass substrate is measured for electric characteristics and physical condition for transmittance and roughness. Since ITO coated glass substrate can be destroyed for inspection about surface roughness, sheet resistance, film thickness and transmittance, precise fabrication condition should be made based on the estimated relationship. In this paper, ITO films were prepared on the commercial glass substrate by the Ion-Plating method changing the partial pressure of gas(Ar, 02) and the chamber temperature between $200^{\circ}C$ and $300^{\circ}C$. The characteristics of films were examined by the 4-point probe, supersonic thickness measurement, transmittance measurement and AFM. We estimated the relationship between processing parameters(Ar gas, O2 gas, Temperature) and properties of ITO films (Sheet Resistance, Film Thickness, Transmittance, Surface Roughness).

The Resistivity Properties and Adhesive Strength of Cu Thin Firms Fabricated by EBE Method (전자빔 증착법으로 제작한 Cu 박막의 부착력과 저항율 특성)

  • Shin, Joong-Hong;Yu, Chung-Hui;Paik, Sang-Bong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.75-80
    • /
    • 2005
  • In this thesis, We Fabricated Cu thin films of 1000 $\AA$, 3000 $\AA$, and 6000 $\AA$ thickness on the single crystal sapphire, polycrystal alumina, and amorphous slide glass substrates deposited by electron beam evaporation(EBE) method. We investigated properties of resistivity and adhesion of these Cu thin films under various conditions, substrate temperature(room temperature, 10$0^{\circ}C$, 20$0^{\circ}C$ under vacuum) and annealing temperatures(400 $^{\circ}C$, 600 $^{\circ}C$ for 30 min after the deposition). We found that these adhesion was increased in order of slide glass, sapphire, and alumina. The adhesion of the Cu thin films on alumina was high value about 4 times, compared with that of the Cu thin films on slide glass. We found that these resistivities were decreased with increasing substrate temperature and thin film thickness. The resistivity(2.05 $\mu$Ω\ulcornercm) of the Cu thin films with 6000 $\AA$ thickness at 200 $^{\circ}C$ on the slide glass was low value, compared with that of aluminum(2.66 $\mu$Ω\ulcornercm).

Thickness Dependence of CVD-SiC-Based Composite Ceramic for the Mold of the Curved Cover Glass (곡면 커버 글라스용 금형 코팅을 위한 CVD-SiC 기반 세라믹 복합체의 두께에 따른 특성 연구)

  • Kim, Kyoung-Ho;Jeong, Seong-Min;Lee, Myung-Hyun;Bae, Si-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.310-315
    • /
    • 2019
  • The use of a silicon carbide (SiC)-based composite ceramic layer for the mold of a curved cover glass was demonstrated. The stress of SiC/VDR/graphite-based mold structure was evaluated via finite element analysis. The results revealed that the maximum tensile stress primarly occured at the edge region. Moreover, the stress can be reduced by employing a relatively thick SiC coating layer and, therefore, layers of various thicknesses were deposited by means of chemical vapor deposition. During growth of the layer, the orientation of the facets comprising the SiC grain became dominant with additional intense SiC(220) and SiC(004). However, the roughness of the SiC layer increased with increasing thickness of the layer and. Hence, the thickness of the SiC layer needs to be adjusted by values lower than the tolerance band of the curved cover glass mold.

A Study on the Shape Measurement of Glass in the Back Light Unit(BLU) (BLU의 Glass 형상 측정 연구)

  • Oh, Choonsuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.211-218
    • /
    • 2019
  • All display devices require more wider, higher resolution and precision owing to advanced display technology. As the display pannels become wider, BLU also become wider and brighter. The upper glass of the BLU must achieve the constant of its shape and thickness and have uniform brightness. These deformity cause the display quality to make less. Thus high performance of the BLU shape's height and thickness measurement is inevitable. The high speed and precision measurement system will be proposed. To minimize the measurement error we can achieve the desirous results by 2 dividing intervals with different moving velocity on measuring.

A Study on the Flexural Property of Glass Fiber Filled Coextruded Wood Plastic Composites (유리섬유가 충전된 공압출 목재.플라스틱 복합재의 굽힘 특성에 관한 연구)

  • Kim, Birm-June
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.4
    • /
    • pp.379-388
    • /
    • 2013
  • In this study, the effect of various glass fiber (GF) contents in a shell layer and shell thickness changes on the flexural property of coextruded wood plastic composites (WPCs) in combination with three core systems (weak, moderate, and strong) was investigated. GF behaved as an effective reinforcement for the whole coextruded WPCs and GF alignments in the shell layer played an important role in determining the flexural property of the coextruded WPCs. At a given shell thickness, the flexural property of the whole coextruded WPCs was improved with the increase of GF content in shell. For core quality, when the core is weak, increase of GF content in shell led to improved flexural property of the whole composites and increase of shell thickness helped it. On the other hand, when the core is strong, the flexural property of the whole composites showed reduced features at low GF content in shell and increase of shell thickness aggravated it. This approach provides a method for optimizing performance of the coextruded WPCs with various combinations of core-shell structure and properties.

  • PDF