• Title/Summary/Keyword: Glass Molding Press

Search Result 60, Processing Time 0.028 seconds

The property of WC(Co 0.5%) ultra precision turning for optical pick-up objective lens molding press for optical infomation storing(I) (광정보저장용 광픽업 대물렌즈 성형용 초경합금 (Co 0.5%) 초정밀절삭 특성(I))

  • Kim, Min-Jae;Lee, Jun-Key;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.178-178
    • /
    • 2009
  • High-density optical information storing equipment, which is using Blu-ray, is the next generation information storing equipment that has about form six times to thirty-five times capacities. and high-density optical information storing equipment uses high NA(Numerical Aperture) aspheric glass objective lens as optical pick-up equipment to record and recognize high-density date. Generally this objective lens is developed and produced through a way of GMP(Glass Molding Press) that uses molding core that is performde by Ultra precision grinding, but grinding performing that has high-accuracy is very difficult because objective lens form is high NA. In this research, we preformed Ultra precision turning, using single crystal diamond bite, about WC(Co 0.5%), sintering brittleness material that is used molding core's material for GMP. and we confirmed aspheric glass lens compression of deformities molding core's Ultra precision turning possibility by measuring surface roughness(Ra) and processing surface's condition.

  • PDF

Ultra Precision Machining of Optical Pick-up Aspheric Glass Objective Lens Molding Press Core for Optical Information Storing (I) (광정보저장용 광픽업 대물렌즈 성형용 코어 초정밀 형상가공 (I))

  • Kim, Min-Jae;Lee, Jun-Key;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.290-290
    • /
    • 2009
  • Blu-ray Disk, the next generation optical information storing equipment used Blu-ray is the next generation leading storing equipment that has capacity is about from six times to thirty-five times bigger than the existing CDs, DVDs. Especially, we need elaborate optical pick-Up equipment to record and recognize detailed date. Moreover, Blu-ray disk has so narrow track-pitch so it is used high NA(Numerical Aperture) aspheric glass objective lens. In this research, we processed optical pick-up aspheric glass objective lens molding press core by parallel grinding method with ultra precision machining and mold core surface measured form accuracy(PV), surface roughness(Ra).

  • PDF

Transcription Characteristics in the Molding of Aspheric Glass Lenses for Camera Phone Module (휴대폰 카메라용 비구면 Glass 렌즈 전사특성 분석)

  • Cha, D.H.;Lee, J.K.;Kim, M.J.;Lee, D.K.;Kim, H.J.;Kim, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.363-366
    • /
    • 2008
  • The transcription characteristics in the molding of aspheric glass lenses for camera phone modules have been investigated experimentally. The surface topographies of both the form and the roughness were compared between the mold and the molded lens. The molded lens showed a transcription ratio of 93.4%, which is obtained by comparing the form accuracy (PV) values of the mold and the molded lens. The transcription of the roughness topography was ascertained by bearing ratio analysis.

  • PDF

Transcription Characteristics in the Molding of Aspheric Glass Lenses for Camera Phone Module (휴대폰 카메라용 비구면 Glass렌즈 전사특성 분석)

  • Cha, Du-Hwan;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.336-336
    • /
    • 2008
  • The transcription characteristics in the molding of aspheric glass lenses for camera phone modules have been investigated experimentally. The surface topographies of both the form and the roughness were compared between the mold and the molded lens. The molded lens showed a transcription ratio of 93.4%, which is obtained bycomparing the form accuracy (PV) values of the mold and the molded lens. The transcription of the roughness topography was ascertained by bearing ratio analysis.

  • PDF

A Study on the Thermal Stresses of the Glass Lens Mold Using in Progressive GMP Process (순차이송 GMP 방식용 유리렌즈 금형의 열응력에 관한 연구)

  • Chang, S.H.;Lee, Y.M.;Shin, G.H.;Yoon, G.S.;Jung, W.C.;Jung, T.S.;Heo, Y.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.289-292
    • /
    • 2007
  • To prevent the damage of glass lens molds and deterioration of glass lenses using in progressive GMP process, a thermal stress and a deformation of the glass lens molds at forming temperature should be considered in the design step. In this study, as a fundamental study to develop a multi cavity mold used in an aspheric glass lens molding, a heat transfer and a thermal stress analysis were carried out for the case of one cavity glass lens mold used in progressive GMP process. Finally, using analysis results, we estimated the thermal stress in a glass lens mold and predicted a modified height of guide ring that determines the forming height of a glass lens.

  • PDF

Molding and Optical Evaluation of Aspheric Glass Lenses for Camera Phone Module (카메라폰 모듈용 비구면 Glass렌즈의 성형 및 광학특성 평가)

  • Kim, Hye-Jeong;Cha, Du-Hwan;Kim, Jeong-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.3
    • /
    • pp.124-131
    • /
    • 2007
  • Aspheric glass lenses was fabricated by glass molding press(GMP), which is a plano-aspheric convox shape and intended for use as an optical design of 3 megapixel and 2.5 magnifications zoom in a camera phone module. Transcription ratio of form accuracy (PV) as well as resolution properties was measured for evaluation the molded lens. Form accuracy (PV) of the mold surface was $0.127\;{\mu}m$ in an aspheric and $0.168\;{\mu}m$ in a plano, in case of the molded lens it shows $0.205\;{\mu}m$ and $0.223\;{\mu}m$, respectively. Resolution of the molded lens was measured as a MTF[Contrast]. The molded lens shows contrast of 32.9% at 80 1p/mm and the value is similar with contrast of 33% obtained simulation.

  • PDF

Transcription Characteristics of Mold Surface Topography in the Molding of Aspherical Glass Lenses

  • Cha, Du-Hwan;Hwang, Yeon;Kim, Jeong-Ho;Kim, Hye-Jeong
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.213-217
    • /
    • 2009
  • The transcription characteristics of the mold surface in the molding of aspherical glass lenses for camera phone modules have been investigated experimentally. The surface topographies of both the form and the roughness were compared between the mold and the molded lens. For the form topography, the molded lens showed a transcription ratio of 93.4% against the mold, which is obtained by comparing the form error (PV) values of the mold and the molded lens. The transcription characteristics of the roughness topography were ascertained by bearing ratio analysis.

A Study on Molding Condition of Aspheric Glass Lenses Using Design of Experiments Slow Cooling Condition

  • Cha, Du-Hwan;Lee, June-Key;Kim, Hyun-Uk;Kim, Sang-Suk;Kim, Hye-Jeong;Park, Yong-Pil;Jeong, Jong-Guy;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.464-464
    • /
    • 2008
  • This study investigated the slow cooling conditions in the molding of aspheric glass lens using the design of experiment (DOE). The optimization of the slow cooling conditions with respect to the form accuracy (PV) of the molded lens were ascertained by employing full factorial design. As a result of the analysis of variance (ANOVA) and P-value (significance level), it was verified that slow cooling rate represent the most significant operative variables that affect the corresponding response variable. In the optimum condition, the molded lens show 82% of transcription ratio.

  • PDF