• Title/Summary/Keyword: Glass Ionomer Cement

Search Result 227, Processing Time 0.025 seconds

AN EXPERIMENTAL STUDY FOR SHEAR BOND STRENGTH OF COMPOISTE RESIN USING SEVERAL DENTIN BONDING AGENTS AND LIGHT CURED GLASS IONOMER CEMENT (상아질 접착제를 사용한 광중합 복합레진과 Glass Ionomer Cement의 전단 결합력에 관한 연구)

  • Kwon, Byung-Ryul;Lee, Jae-Ho;Choi, Hyung-Jun;Lee, Jong-Gap
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.2
    • /
    • pp.450-460
    • /
    • 1996
  • The purpose of this study was to compare shear bond strength of composite resin using several dentin bonding agents and light cured glass ionomer cement(Fuji II LC). 40 Bovine primary anterior teeth were used for this experiment. Labial surface of teeth were flattened. It were divided into four groups. Each group was composed of 10 teeth. The material used for this experiment were Scotchbond Multipurpose-Z-100, Allbond 2-Aelitefil, Gluma-Pekalux, light cured glass ionomer cement(Fuji II LC). Each of the materials was applied to the exposed surfaces of 10 teeth by insertion into a cylindrical shaped matrix which is 3mm diameter and 3mm in height. The completed specimens were stored at $37^{\circ}C$ under 100% humidity for 24 hours : the shear bond strength of each material to dentin surface were measured with INSTRON universal testing machine. The results were as follows : 1. Shear bond strength to dentin surface increased in order of light cured glass ionomer cement(Fuji II LC), Gluma, Allbond 2, Scotchbond Multipurpose. 2. Between shear bond strength of light cured glass ionomer cement(Fuji II LC) and Allbond 2, there was statistical significace(p<0.05) 3. Between shear bond strength of light cured glass ionomer cement(Fuji II LC) and Scotchbond Multipurpose, between shear bond strength of Gluma and Scotchbond Multipurpose, there was statistical significance.(p<0.01) The shear bond strength of dentin bonding agents were higher than light cured glass ionomer cement. The reason is that materials and quality of dentin bonding agent were enhanced. Further investigation is necessary to improve shear bond strength of light cured glass ionomer cement.

  • PDF

THE EFFECT OF ACID ETCHING ON GLASS IONOMER CEMENT SURFACES (Glass ionomer cement 표면의 산부식 효과에 관한 연구)

  • Han, Seung-Weon;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.1
    • /
    • pp.1-26
    • /
    • 1993
  • The purpose of this study was to investigate the effect of acid etching on the surface appearance and fracture toughness of five glass ionomer cements. Five kinds of commercially available glass ionomer cements including chemical curing filling type, chemical curing lining type, chemical curing metal reinforced type, light curing tilling type and light curing lining type were used for this study. The specimens for SEM study were fabricated by treating each glass ionomer cement with either visible light curing or self curing after being inserted into a rubber mold (diameter 4mm, depth 1mm). Some of the specimens were etched with 37% phosphoric acid for 0, 15, 30, 60, go seconds, at 5 minutes, 1 hour and 1 day after mixing of powder and liquid. Unetched ones comprised the control group and the others were the experimental groups. The surface texture was examined by using scanning electron microscope at 20 kV. (S-2300, Hitachi Co., Japan). The specimens for fracture toughness were fabricated by curing of each glass ionomer cement previously inserted into a metal mold for the single edge notch specimen according to the ASTME399. They were subjected to a three-point bend test after etching for 0, 30, 60, and 90 seconds at 5 minutes-, 1 hour-and 1 day-lapse after the fabrication of the specimens. The plane strain fracture toughness ($K_{IC}$) was determined by three-point bend test which was conducted with cross-head speed of 0.5 mm/min using Instron universal testing machine (Model No. 1122) following seven days storage of the etched specimens under $37^{\circ}C$, 100% humidity condition. Following conclusions were drawn. 1. In unetched control group, crack was present, but the surface was generally smooth. 2. Deterioration of the surface appearance such as serious dissolving of gel matrix and loss of glass particles occured as the etching time was increased beyond 15 s following Immediate etching of chemical curing type of glass ionomer cements. 3. Etching after 1 h, and 1 d reduced surface damage, 15 s, and 30s etch gave rough surface appearance without loss of glass particle of chemical curing type of glass ionomer cements. 4. Light curing type glass ionomer cement was etched by acid, but there was no difference in surface appearances according to various waiting periods. 5. It was found that the value of plane stram fracture toughness of glass ionomer cements was highest in the light curing filling type as $1.79\;MNm^{-1.5}$ followed by the light curing lining type, chemical curing metal reinforced type, chemical curing filling type and chemical curing lining type. 6. The value of plane stram fracture toughness of the chemical curing lining type glass ionomer cement etched after 5 minutes was lower than those of the cement etched after 1 hour or day or unetched (P < 0.05). 7. Light curing glass ionomer cement showed Irregular fractured surface and chemical curing cement showed smooth fractured surface.

  • PDF

A STUDY OF THE SHEAR BOND STRENGTH OF COMPOSITE RESIN TO LIGHT-CURING GLASS IONOMER CEMENTS (광중합형 글라스아이오노머 시멘트와 복합레진과의 전단결합강도에 관한 연구)

  • Kim, Deok;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.447-459
    • /
    • 1994
  • The purpose of this study is to evaluate of shear bond strength of light-curing composite resin to light-curing glass ionomer cement. Composite resin and glass ionomer cement have been widely used as an esthetic filling materials in dental clinics. To achieve better clinical results, sandwich technic was developed with conpensating for disadvantages of these two materials. Especially, light-curing glass ionomer cement provided greately improved bonding strength of teeth or composite resin, and then excellent clinical results can be acquired. In this study, 6 commercial light-curing glass ionomer cements(3 commercial restorative materials : Fuji II LC, Variglass VLC, Vitremer, and 3 commercial lining materials : Fuji Lining LC, Baseline VLC, Vitrebond) were devided two groups. According to manufacturer's appointment, no surface treatment was referred to N groups. Supposing. of clinical practice, surface grinding with water spray at 320 grit sand paper, 40 seconds etching with 37% phosphoric acid, 20 seconds washing, 20 seconds air drying was referred to N groups. Totally 12 experimental groups were devided, and all 120 specimens from 10 specimens of each groups were made. After light-curing composite resin was bonded to light-curing glass ionomer cement, shear bond strength was tested by Instron universal testing machine between glass ionomer cement and composit resin. The data were analyzed statistically by Student's t-test and ANOVA. The obtained results were as follows; 1. In light-curing glass ionomer cement, restorative materials showed higher shear bond strength to composite resin than lining materials(p<0.05). 2. Variglass VLC of restorative material group and Baseline VLC of lining material group have highest shear bond strength to composite resin(p<0.001). 3. In light-curing glass ionomer cement, surface grinding and acid etching reduced shear bond strength to composite resin(p<0.001)}. 4. VGN group 1s highest shear bond strength to composite resin, VBE group is lowest shear bond strength to composite resin(p<0.001).

  • PDF

A STUDY ON THE SHEAR BOND STRENGTH OF THE COMPOSITE RESIN TO GLASS IONOMER CEMENT ACCORDING TO SURFACE TREATMENT METHODS OF GLASS IONOMER CEMENT (글라스 아이오노머 시멘트의 표면처리방법에 따른 복합레진과의 전단결합강도에 관한 연구)

  • No, Bong-Hwan;Hwang, Ho-Keel;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.362-371
    • /
    • 1995
  • The purpose of this study was to evaluate the shear bond strength between composite resin and glass ionomer cement according to surface treatment methods of glass ionomer cement. Sixty round acrylic cylinders were fabricated. And then, a round undercut cavity(8 mm diameter, 2.5mm depth) was prepared in the center of the every acrylic cylinder. After all cavities were restored by using light-cured glass ionomer cement. A total of sixty acrylic cylinders restored with glass ionomer cement were divided into 4 groups according to surface treatment methods of glass ionomer cement. The surface treatment of each group were as follows : control group : no treatment Group 1 : acid etching Group 2 : sandblasting Group 3 : air-podwer abrasive polishing The composite resin was bonded to glass ionomer cement of each specimens. And the shear bond strength was tested with a universal testing machine at a cross-head speed of 1mm/min and 500kg in full scale. The results were as follows : 1. The sandblasting group(group 2) had the highest shear bond strength with $272.50{\pm}24.96\;kg/cm_2$ and the acid etching group(group 1) had the lowest shear bond strength with $192.89{\pm}29.32kg/cm_2$. 2. The no treated group(control group) had higher shear bond strength than acid etching group(group 1) (p<0.05). 3. The sandblasting group(group 2), air-powder abrasive polishing group(group 3) and no treated group(control group) had higher shear bond strength than the acid etching group(group 1) (p<0.05). 4. The sandblasting group(group 2) and air-powder abrasive polishing group(group 3) had higher shear bond strength than the no treatment group(control group), but there was not significant(p>0.05).

  • PDF

BONDING STRENGTH OF GLASS-IOMOMER CEMENT AND COMPOSITE RESIN COMBINATION (Glass ionomer cement의 상아질 결합력에 관한 연구)

  • Um, Chung-Moon;Oilo, Gudbrand
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.633-640
    • /
    • 1994
  • The tensile bond strength to dentin was measured for three glass-ionomer cement and composite resin combinations: two light-curing glass-ionomer cements(Vitrebond and XR - Ionomer) and one traditional glass - ionomer cement(Ketac - Bond), two adhesive systems(Scotchbond, and XR - Bonding System), and a corresponding composite resin. The bond strength of this "sandwich" was also compared with that of the same cements used in bulk. Vitredbond showed a significantly higher bond strength in bulk than did the other two cements. Of the sandwiches, the XR - Iomomer and XR - Bond combination showed a bond strength significantly higher than that of the Vitrebond and Scotchbond or Ketac- bond and Scotchbond combination. The fracture of the bond was mainly adhesive for Vitrebond, cohesive for XR - Ionomer when used in bulk and adhesive - cohesive when used in a sandwich, and cohesive for Ketac-Bond.

  • PDF

AN EXPERIMENTAL STUDY ON THE MARGINAL LEAKAGE OF GLASS IONOMER CEMENT (Glass Ionomer Cement의 변록누출(邊綠漏出)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Joo, Kwang-Seop;Yoo, Kun-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.7 no.1
    • /
    • pp.101-106
    • /
    • 1981
  • The purpose of this study was to estimate the ability of the marginal fit of Glass ionomer cement. Using the human extracted teeth and 2% acqueous solution of methylene blue, the author investigated the marginal penetration of dye in restorative materials such as Amalgam, Hi-Pol, Glass ionomer cement, Estic microfill and Restodent. The results were as follows. 1. All filling materials showed some degree of marginal penetration. 2. Glass ionomer cement revealed nearly the same microleakage as Estic microfill and Hi-Pol, but showed inferior effect of the marginal seal as compared with Restodent. 3. It is appeared that Amalgam has more effective ability of the marginal fit than the others within a week.

  • PDF

A STUDY ON THE MARGINAL LEAKAGE OF RESTORATIONS WITH DIFFERENT CAVOSURFACE MARGINS (와연형태(窩緣形態)에 따른 와연누출(邊緣漏出)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Shin, Han-Ju;Choi, Ho-Young;Min, Byung-Soon;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.1
    • /
    • pp.119-129
    • /
    • 1986
  • The purpose of this study was to evaluate the marginal leakage of glass ionomer cement with different cavosurface margins. 192 class V cavities were prepared on freshly extracted non-carious teeth and glass ionomer cement were inserted according to the manufacturer's instructions. Cavity preparations for this investigation were performed in four groups. The experimental specimens were made by packing the glass ionomer cement (Fuji Ionomer Type II G-C Co. Japan) into the prepared 192 cavities of four groups with different modes: Group I. - The 48 cavities with $90^{\circ}$ butt-joint cavosurface preparation and restored with glass ionomer cement. Group II. - The 48 cavities with butt-joint preparation modified by $135^{\circ}$ beveling the cavosurface in the dentin and restored with glass ionomer cement. Group III. - The 48 cavities with butt-joint preparation modified by cutting a chamfer in the dentin and restored with glass ionomer cement. Group IV. - The same 48 cavities as group I, and overfilled with glass ionomer cement beyond the cavosurface angle. And four groups above described divided into three subgroups by means of conditioning the cavity walls: Control group. - Glass ionomer cement filled in the prepared 64 cavities after being cleaned with a stream of tap water. Phosphoric acid treatment group. - Glass ionomer cement filled in the prepared 64 cavities after being conditioned with a 50% phosphoric acid. Citric acid treatment group. - Glass ionomer cement filled in the prepared 64 cavities after being conditioned with a 50% citric acid. All 192 specimens were immersed in the 2.0% basic fuchsin solution and subjected to thermal stress at one-minute intervals ($4{\pm}2^{\circ}C$ to $60{\pm}2^{\circ}C$) for 70 minutes before exposure to the dye. The specimens were sectioned ecclesiologically through the center of the restorations for different periods of immersion time, 24 hours, 7 days, 14 days 30 days. The sections were examined under a stereoscopic microscope. The results were as follows: 1. The degree of marginal leakage in group II and III was greater than that in group I and IV. 2. The degree of marginal leakage in phosphoric acid treatment group was similar with that in control group. 3. The degree of marginal leakage in citric acid treatment group was less than that in control group. 4. In all groups, the degree of marginal leakage in phosphoric acid treatment group was greater than that in citric acid treatment group. 5. There is no statistical difference of the degree of marginal leakage according to the immersion time in the dye solution.

  • PDF

CHANGES OF MARGINAL ADAPTATION TO THE CAVITY FLOOR OF LIGHT-CURED GLASS IONOMER CEMENT BASE AFTER APPLICATION OF A COMPOSITE RESTORATION (복합레진 적용에 따른 광중합형 글라스아이오노머 시멘트의 변연 적합도의 변화)

  • Lee, Gye-Young;Lee, Kwang-Won;Park, Soo-Joung
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.136-146
    • /
    • 1999
  • The purpose of this study was to estimate the changes of marginal adaptation to the cavity floor of light-cured glass ionomer cement base after application of a composite restoration. Eighty non-carious extracted human molars were used in the present study. Circular cavities were prepared on the center of the exposed dentin surface to 0.5mm, 1.0mm, 1.5mm, 2.0mm in depth and the prepared cavities were pretreated with Dentin conditioner and filled with Fuji II LC(GC Int. Co., Japan). They randomly assigned into 3 groups according to the difference in application of a composite restoration; Group 1(control group): only glass ionomer base, Group 2: The application of a composite restoration surrounded by dentin with class I cavity over glass ionomer base after conventional dentin bonding to the exposed dentin and glass ionomer base, Group 3: The application of composite restoration not-surrounded by dentin over glass ionomer base after conventional dentin bonding to the exposed dentin and glass ionomer base. To examine the interface between cavity floor and light-cured glass ionomer cement base, each groups were sectioned vertically through the center of restorations with diamond saw and the gap size(${\mu}m$) of interface measured by SEM. The results were analyzed by using One Way ANOVA. The results were as follows: 1. Good adaptation between glass ionomer cement base and cavity floor was showed in specimens with 0.5mm, 1.0mm depth base of control group. But in specimens with 1.5mm, 2.0mm depth base of control group, the gap was measured about $15{\mu}m$, $40{\mu}m$ respectively. 2. Gap size in group 2 was significantly higher than that in control group(P<0.05). 3. Gap size in group 3 was significantly higher than that in control group and group 2(P<0.05). 4. It was possible to observe the good adaptation between glass ionomer cement base and dentin which was intermediated with 4-10${\mu}m$ hybrid layer in specimens with 0.5mm, 1.0mm depth base of control group. Cohesive fracture within cement base was observed in all specimens which had the gap between glass ionomer cement base & dentin. 5. It was possible to observe the gap formation between cement base and bonding agent and between composite resin and dentin in all specimens of group 2.

  • PDF

A STUDY ON THE EFFECTS OF THE TEMPERATURE AND HUMIDITY TO THE TENSILE BOND STRENGTH BETWEEN GLASS-IONOMER CEMENT AND COMPOSITE RESIN (온도 및 습도가 Glass-ionomer cement와 Composite resin의 접착강도에 미치는 변화에 관한 연구)

  • Chung, Inn-Gyo;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.1
    • /
    • pp.60-73
    • /
    • 1991
  • The purpose of this study is to evaluate the effects of etching time, environmental temperature and humidity on the adhesion of composite resin to glass-ionomer cement. Two chemical cure composite resins (Clearfil F II and Microrest AP) and two glass-ionomer cements (Fuji ionomer Type I and KET AC-CEM) were used as the experimental materials. The experiment is performed in 3 stages: The first stage is to bond composite resins to glass-ionomer cements, and the surface was not etched, and etched for 20 seconds, 40 seconds, and 60 seconds. Then specimens are stored in distilled water at $37^{\circ}C$ for 24 hours to measure tensile strength. The second stage is to choose the one group that had the highest tensile strength from the first stage and prepare two experimental groups: One group with composite resin bonded to glass-ionomer cement without etching and bonding agent application and the other with composite resin bonded to glass-ionomer cement with etching but without any bonding agent application. The specimens are stored in distilled water at $37^{\circ}C$ for 24 hours and tensile strength is measured. The third stage is to choose group that had the highest tensile strength from the first stage experiment, and bond composite resin to glass-ionomer cement at $24^{\circ}C$ 44%, $30^{\circ}C$ 44%, $30^{\circ}C$ 80%, and $32^{\circ}C$ 92%. The storage time of specimens is to bond immediately after storage, then changed to 30 sec., 60 sec., and 120 sec.. Specimens are stored in distilled water at $37^{\circ}C$ for 24 hours and their tensile strength are measured again. The following results were obtained: 1. As the etching time increases, the tensile bond strength between glass-ionomer cement and composite resin increase, and the tensile bond strength is the highest when acid etched for 60 minutes (P < 0.05). 2. After acid etching for 60 minutes, the tensile strength of the group with bonding agent was stronger than that without bonding agent application (P < 0.05). 3. The tensile strength of Clearfil F II was stronger than that of Microrest AP. 4. It was observed that the tensile bond strength is not affected by different storage time with different temperature and humidity. 5. As the humidity was increased, the tensile bond strength between glass-ionomer cement and composite resin decreased (P < 0.05).

  • PDF

THE EFFECT OF TOPICAL FLUORIDES ON SURFACE STRUCTURES OF VARIOUS ESTHETIC RESTORATIVE MATERIALS (불소 제재가 심미 수복 재료의 표면 구조에 미치는 영향)

  • Kim, Un-Yong;Choi, Byung-Jai
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.2
    • /
    • pp.436-448
    • /
    • 1997
  • Topical fluoride application for children is a widely performed procedure in the field of Pediatric Dentistry for its dental caries prevention effects. However, it is recently recognized as having some unwanted effects on several esthetic restorative materials as it roughens the surfaces of the restorative materials. In order to evaluate the surface changes in esthetic restorative materials, the author immersed composite resin, glass ionomer cement, and resin-modified glass ionomer cement specimens in various topical fluoride agents and measured the weight loss and also, examined the specimens under the scanning electron microscope. The followings are the results : 1. All the specimens immersed in APF gel for 4 minutes showed statistically significant weight loss. (paired t-test, P<0.05). 2. There was no statistically significant weight loss for the resin-modified glass ionomer cement and composite resin groups immersed in sodium fluoride solution (paired t-test, P>0.05). 3. When the glass ionomer cement group was immersed in APF gel for 1 and 4 minutes, there was a statistically significant weight loss compare to other esthetic restorative materials (ANOVA, P<0.05). 4. In the resin-modified glass ionomer cement group and the composite resin group, weight loss in the APF gel 4 minutes immersion group was greater than the 1 minute immersion group, and it was statistically significant (ANOVA, P<0.05). 5. When the specimens were examined under scanning electron microscope, the surface changes were greatest in the order of glass ionomer cement, resin-modified glass ionomer cement, composite resin and also in the order of APF gel 4 minute immersion group, 1 minute immersion group, sodium fluoride immersion group, and control group.

  • PDF