• Title/Summary/Keyword: Glass Fibres

Search Result 22, Processing Time 0.016 seconds

Fibre reinforcement in a structurally compromised endodontically treated molar: a case report

  • Soares, Renita;Ataide, Ida de Noronha de;Fernandes, Marina;Lambor, Rajan
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.2
    • /
    • pp.143-147
    • /
    • 2016
  • The reconstruction of structurally compromised posterior teeth is a rather challenging procedure. The tendency of endodontically treated teeth (ETT) to fracture is considerably higher than vital teeth. Although posts and core build-ups followed by conventional crowns have been generally employed for the purpose of reconstruction, this procedure entails sacrificing a considerable amount of residual sound enamel and dentin. This has drawn the attention of researchers to fibre reinforcement. Fibrereinforced composite (FRC), designed to replace dentin, enables the biomimetic restoration of teeth. Besides improving the strength of the restoration, the incorporation of glass fibres into composite resins leads to favorable fracture patterns because the fibre layer acts as a stress breaker and stops crack propagation. The following case report presents a technique for reinforcing a badly broken-down ETT with biomimetic materials and FRC. The proper utilization of FRC in structurally compromised teeth can be considered to be an economical and practical measure that may obviate the use of extensive prosthetic treatment.

Structural Characteristics and Physical Properties of Wild Silk Fibres; Antheraea pernyi and Antheraea yamamai (야잠사의 구조특성 및 물리적 성질)

  • 권해용;박영환
    • Journal of Sericultural and Entomological Science
    • /
    • v.36 no.2
    • /
    • pp.138-146
    • /
    • 1994
  • The structural characteristics of Antheraea yamamai and Antheraea pernyi silk were investigated by using x-ray diffraction method, IR spectroscopy and polarizing microscopy. The amino acid composition, fiber density, thermal decomposition temperature and glass transition temperature were also measured for relating these physical properties to the structure in comparison with those of Bombyx mori silk fiber. There was no significant structural difference between A. yamamai and A. pernyi silk fiber on an examination of x-ray diffraction curve and IR spectrum. Both of these wild silk fibers showed double diffraction peaks at the Bragg angle 2Θ16.7˚ and 20.5˚by x-ray diffraction analysis as well as IR absorption peaks for the bending vibration of specific groups related to ala-ala amino acid sequence. On the other hand, the x-ray diffraction curve and IR spectrum of Bombyx mori silk fiber are different from those of wild silk fibers, indicating different crystal structure as well as amino acid sequences. It showed under the polarizing microscope examination that the birefringence and optical orientation factor of wild silk fibers are much lower than those of B. mori silk. Also, the surface of degummed wild silk fibers was characterized by the longitudinal stripes of microfibrils in the direction of fiber axies. The amino acid composition, which is strongly related to the fine structure and properties, was not significantly different between these two wild silk fibers. However, the alanine content was somewhat less and polar amino acid content more for A. yamamai. As a result of fiber density measurement, the specific gravities of B. mori, A. pernyi and A. yamamai were 1.355~1.356, 1.308~1.311, 1.265~1.301g/㎤ in the order, respectively. The calculated crystallinity(%) was 64% for B. mori and 51~52% for wild silk fibers, which showed same trend by IR method in spite of somewhat higher value. The thermal decomposition behaviour was examined by DSC and TGA, showing that the degradation temperature was in the order of B mori, A. prernyi and A. yamamai at around 350$^{\circ}C$. It was also observed by TGA that the decomposition seems to proceed step by step according to their specific regions in the fiber structure, resulting the difference in their thermal stabilities. The glass transition temperature was turned out to be 220$^{\circ}C$ for B. mori, 240$^{\circ}C$ A. yamamai and 255$^{\circ}C$ A. pernyi by the dynamic mechanical analysis. It is expected that the chemical properties are affected by the dynamic mechanical behavior in accordance with their structural characters.

  • PDF