• Title/Summary/Keyword: Glass Fiber Reinforced Metal Laminates

Search Result 6, Processing Time 0.023 seconds

The Statistical Evaluation of Strength in Fiber Reinforced Metal Laminates (섬유강화금속적층재의 강도에 대한 통계적 평가)

  • 손세원;장정원;이혜영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.815-819
    • /
    • 1994
  • In this paper, the tensile strength in aluminum alloy 5052, Kevlar 49-fiber reinforced aluminum alloy laminates, and Glass-fiber reinforced aluminum alloy laminates, is statistically evaluated. Prepregs manufactured in Han Kuk Fiber is used and FRMLs is cured by Hot-Press. Standard statistical are used to determine the distribution function which best fits FRMLs strength data. The normal,lpg-normal, and two-parameter Weibull distrbuttion are evaluated using the Kolmogoorov-Smirnov goodness-of-fit test. At the 5% significance level, none of these distribution is rejected. The strength of Aluminum alloy 5052 is best fits to a normal distribution. However, the strength of Kevlar 49-fiber reinforced aluminum alloy laminates and Glass-fiber reinforced aluminum alloy laminates is best fits to a two-parameter Weibull distribution.

  • PDF

Influences of Fiber Laminate Orientation on the Behavior of Fatigue Delamination in GLARE (GLARE 의 섬유층 배향이 피로층간분리 거동에 미치는 영향)

  • 황진우;송삼홍;김철웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.479-482
    • /
    • 2004
  • The behavior of fatigue delamination in a GLARE(Glass Fiber Reinforced Metal Laminates) under fatigue loading conditions investigated. The behavior of fatigue delamination was examined basing on investigation of the crack and delamination using a SAM (Scanning Acoustic Microscope). The crack and delamination behavior on the relationship among a-N, SAM images and crack length-delamination length were considered. The test results indicated the features of different fatigue delamination and crack growth according to each fiber orientation angle and also obtained to more increase delamination than crack through the relationship between crack length and delamination length in GLARE.

  • PDF

Evaluation on Tensile Properties and Fracture Toughness of Glass Fiber/Aluminum Hybrid Laminates (유리섬유/알루미늄 혼성 적층판의 인장특성과 파괴인성 평가)

  • Woo Sung-Choong;Choi Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.876-888
    • /
    • 2005
  • Tensile properties and fracture toughness of monolithic aluminum, fiber reinforced plastics and glass fiber/aluminum hybrid laminates under tensile loads have been investigated using plain coupon and single-edge-notched specimens. Elastic modulus and ultimate tensile strength of GFMLs showed different characteristic behaviors according to the Al kind, fiber orientation and composition ratio. Fracture, toughness of A-GFML-UD which was determined by the evaluation of $K_{IC}$ and $G_{IC}$ based on critical load was similar to that of GFRP-UD and was much higher than monolithic Al. Therefore, A-GFML-UD presented superior fracture toughness as well as prominent damage tolerance in comparison to its constituent Al. By separating Al sheet from GFMLs after the test, optical microscope observation of fracture zone of GFRP layer in the vicinity of crack tip revealed that crack advance of GFMLs depended on the orientation of fiber layer as well as Al/fiber composition ratio.

Effect of Bonding Surface Laser Patterns on Interfacial Toughness of GFRP/Al Composite (GFRP/Al 복합재료의 접합부 레이저 패턴이 계면인성에 미치는 영향)

  • Woo Yong Sim;Yu Seong Yun;Oh Heon Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.1-7
    • /
    • 2023
  • Fiber-metal laminates (FMLs) and polymer matrix composites (PMCs) are formed in various ways. In particular, FMLs in which aluminum is laminated as a reinforced layer are widely used. Also, glass fiber-reinforced plastics (GFRPs) are generally applied as fiber laminates. The bonding interface layer between the aluminum and fiber laminate exhibits low strength when subjected to hot press fabrication in the event of delamination fracture at the interface. This study presents a simple method for strengthening the interface bonding between the aluminum metal and GFRP layer of FML composites. The surfaces of the aluminum interface layer are engraved with three kinds of patterns by using the laser machine before the hot press works. Furthermore, the effect of the laser patterns on the interfacial toughness is investigated. The interfacial toughness was evaluated by the energy release rate (G) using an asymmetric double cantilever bending specimen (ADCB). From the experimental results, it was shown that the strip type pattern (STP) has the most proper pattern shape in GFRP/Al FML composites. Therefore, this will be considered a useful method for the safety assessment of FML composite structures.

Investigating the deflection of GLARE and CARALL laminates under low-velocity impact test, experimentally and FEM simulation

  • Meisam Mohammadi;Mohammad Javad Ramezani
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.395-403
    • /
    • 2023
  • The main objective of this article is to investigate the response of different fiber metal laminates subjected to low velocity impact experimentally and numerically via finite element method (FEM). Hence, two different fiber metal laminate (FML) samples (GLARE/CARALL) are made of 7075-T6 aluminum sheets and polymeric composites reinforced by E-glass/carbon fibers. In order to study the responses to the low velocity impacts, samples are tested by drop weight machine. The projectiles are released from 1- and 1.5-meters height were the speed reaches to 4.42 and5.42 meter per second and the impact energies are measured as 6.7 and 10 Joules. In addition to experimental study, finite element simulation is done and results are compared. Finally, a detailed study on the maximum deflection, delamination and damages in laminates and geometry's effect of projectiles on the laminate response is done. Results show that maximum deflection caused by spherical projectile for GLARE samples is more apparent in comparison with the CARALL samples. Moreover, the maximum deflection of GLARE samples subjected to spherical projectile with 6.7 Joules impact energy, 127% increases in comparison with the CARALL samples in spite of different total thickness.

The Relationship Between Delamination Element and Delamination Growth (층간분리 요소와 층간분리 성장의 관계)

  • 송삼홍;김철웅;홍정화;김태수;황진우
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.113-116
    • /
    • 2003
  • The investigation of delamination growth behavior in hybrid composite material such as FRMLs should be considered delamination growth rate, dA_D/da$ using the delamination shape factor, $f_S$ instead of traditional fracture mechanics parameters. The main objective of this study is to evaluate the relationship between delamination element (i. e. delamination width, b, delamination contour, c, delamination shape factor, $f_S$ and delamination growth rate, dA_D/da$) and delamination growth in FRMLs under cyclic bending moment. The delamination shape formed along the fatigue crack between aluminum layer and glass fiber/epoxy layer are measured by scanning method. The details of study are as follow : ⅰ) Relationship between crack length, a and delamination width, b. ⅱ) Variation of delamination growth rate, dA_D/da$ was attendant on delamination shape factors, $f_{S1}$, $f_{S2}$, $f_{S3}$. The test result indicated the delamination growth behavior depends in delamination element such as delamination width, b, delamination shape factors, $f_{S1}$, $f_{S2}$, $f_{S3}$.

  • PDF