• Title/Summary/Keyword: Glass Feature

Search Result 64, Processing Time 0.029 seconds

Condition Monitoring of an LCD Glass Transfer Robot Based on Wavelet Packet Transform and Artificial Neural Network for Abnormal Sound (LCD 라인의 음향 특성신호에 웨이브렛 변환과 인경신경망회로를 적용한 공정로봇의 건정성 감시 연구)

  • Kim, Eui-Youl;Lee, Sang-Kwon;Jang, Ji-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.813-822
    • /
    • 2012
  • Abnormal operating sounds radiated from a moving transfer robot in LCD (liquid crystal display) product lines have been used for the fault detection line of a robot instead of other source signals such as vibrations, acoustic emissions, and electrical signals. Its advantage as a source signal makes it possible to monitor the status of multiple faults by using only a microphone, despite a relatively low sensitivity. The wavelet packet transform for feature extraction and the artificial neural network for fault classification are employed. It can be observed that the abnormal operating sound is sufficiently useful as a source signal for the fault diagnosis of mechanical components as well as other source signals.

Low Temperature Deposition of ITO Thin Films for Flat Panel Displays by ICP Assisted DC Magnetron Sputtering (유도결합 플라즈마(ICP) Sputtering에 의한 평판 디스플레이(FPD)용 ITO 박막의 저온 증착)

  • 구범모;정승재;한영훈;이정중;주정훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.3
    • /
    • pp.146-151
    • /
    • 2004
  • Indium tin oxide (ITO) is widely used to make a transparent conducting film for various display devices and opto-electric devices. In this study, ITO films on glass substrate were fabricated by inductively coupled plasma (ICP) assisted dc magnetron sputtering. A two-turn rf coil was inserted in the process chamber between the substrate and magnetron for the generation of ICP. The substrates were not heated intentionally. Subsequent post-annealing treatment for as-deposited ITO films was not performed. Low-temperature deposition technique is required for ITO films to be used with heat sensitive plastic substrates, such as the polycarbonate and acrylic substrates used in LCD devices. The surface roughness of the ITO films is also an important feature in the application of OLEDs along with the use of a low temperature deposition technique. In order to obtain optimum ITO thin film properties at low temperature, the depositions were carried out at different condition in changing of Ar and $O_2$ gas mixtures, ICP power. The electrical, optical and structural properties of the deposited films were characterized by four-point probe, UV/VIS spectrophotometer, atomic force microscopy(AFM) and x-ray diffraction (XRD). The electrical resistivity of the films was -l0$^{-4}$ $\Omega$cm and the optical transmittance in the visible range was >85%. The surface roughness ( $R_{rms}$) was -20$\AA$.>.

Morphology and Thermal Properties of PPS/ABS Blends (PPS/ABS 블렌드의 형태학적/열적 특성)

  • 이영관;김준명;남재도;박찬석;장승필
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.366-373
    • /
    • 2000
  • In this study, the PPS/ABS blend system was investigated in order to collectively identify the relationship among blend morphology, chemical compatibilization and thermal property. ABS resin was chemically modified by the incorporation of maleic anhydride through reactive extrusion for enhanced compatibilization, and PPS, ABS and the modified ABS were blend by a sing twin screw extruder. The effect of chemical modification of ABS on the morphological, mechanical, and thermal properities of the resulting blend was examined. A strong interaction was observed between PPS and MABS by optical microsopy as well as scanning electron microscopy, exhibiting a well-dispersed morphological feature. The PPS/MABS blend showing a single glass transition temperature was observed in dynamic mechanical analysis, demonstrating a pseudo-homogeneous phase morphology induced by chemical compatibilization. PPS/MABS blend also exhibited an enhanced thermal stability and heat distortion temperature compared with modified PPS/ABS blend.

  • PDF

Cell Adhesion and Growth on Nanostructured Surface

  • Yoon, Seo Young;Park, Yi-Seul;Choi, Sung-Eun;Jung, Da Hee;Lee, Jin Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.93-93
    • /
    • 2013
  • To make the rationale design of interface between cell and artificial surface, many studies have been controlled influencing cue which can typically be divided into two central categories: chemical cues based on modification surface chemical properties containing attractive/repulsive molecules, and physical cues that may include applied tension/stress, electrical polarization, magnetic field, and topography. Recently, researches have been focused on physical cue, especially topography. The surface topography may influence cellular responses for example, cell adhesion, cell morphology and gene expression. However, there were few systematic studies about these nanotopographical effects on neuronal developments in a feature size-dependent manner. Herein, we report a nanoscale-resolved study of nanotopographical effects on cellular adhesion and growth. In this study, we use substrates with packed glass beads by rubbing method for generating highly periodic nanotopographies with various sizes. We found that acceleration of neuritogenesis appeared only on the beads larger than 200 nm in diameter, and observed that filopodial thickness was comparable with this scale. This study is expected to be essential to elucidate the nanotopographical effect on cellular adhesion and growth.

  • PDF

Directly Nano-precision Feature Patterning on Thin Metal Layer using Top-down Building Approach in nRP Process (나노 복화공정의 역방향 적층법을 이용한 직접적 나노패턴 생성에 관한 연구)

  • 박상후;임태우;양동열;공홍진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.153-159
    • /
    • 2004
  • In this study, a new process to pattern directly on a thin metal layer using improved nano replication printing (nRP) process is suggested to evaluate the possibilities of fabricating a stamp for nano-imprinting. In the nRP process, any figure can be replicated from a bitmap figure file in the range of several micrometers with nano-scaled details. In the process, liquid-state resins are polymerized by two-photon absorption which is induced by femto-second laser. A thin gold layer was sputtered on a glass plate and then, designed patterns or figures were developed on the gold layer by newly developed top-down building approach. Generally, stamps fur nano-imprinting have been fabricated by using the costly electron-beam lithography process combined with a reactive ion-etching process. Through this study, the effectiveness of the improved nRP process is evaluated to make a stamp with the resolution of around 200nm with reduced cost.

Thermo-elastic analysis of rotating functionally graded micro-discs incorporating surface and nonlocal effects

  • Ebrahimi, Farzad;Heidar, Ebrahim
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.295-318
    • /
    • 2018
  • This research studies thermo-elastic behavior of rotating micro discs that are employed in various micro devices such as micro gas turbines. It is assumed that material is functionally graded with a variable profile thickness, density, shear modulus and thermal expansion in terms of radius of micro disc and as a power law function. Boundary condition is considered fixed-free with uniform thermal loading and elastic field is symmetric. Using incompressible material's constitutive equation, we extract governing differential equation of four orders; to solution this equation, we utilize general differential quadrature (GDQ) method and the results are schematically pictured. The obtained result in a particular case is compared with another work and coincidence of results is shown. We will find out that surface effect tends to split micro disc's area to compressive and tensile while nonlocal parameter tries to converge different behaviors with each other; this convergence feature make FGIMs capable to resist in high temperature and so in terms of thermo-elastic behavior we can suggest, using FGIMs in micro devices such as micro turbines (under glass transition temperature).

Magnetoresistance of Single-type and Dual-type GMR-SV Multilayer Thin Films with Top and Bottom IrMn Layer (상부와 하부 IrMn층을 갖는 단일구조 및 이중구조 거대자기저항-스핀밸브 다층박막의 자기적 특성 비교 분석)

  • Choi, Jong-Gu;Kim, Su-Hee;Choi, Sang-Heon;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.115-122
    • /
    • 2017
  • The antiferromagnet IrMn based four different GMR-SV multilayers on Corning glass were prepared by using ion beam deposition and DC magnetron sputtering system. The magnetoresistance (MR) properties for single-type and dual-type GMR-SV multilayer films were investigated through the measured major and minor MR curves. The exchange bias coupling field ($H_{ex}$) and coercivity ($H_c$) of pinned layer, the $H_c$ and interlayer exchange coupling field ($H_{int}$) of free layer for the dual-type structure GMR-SV multilayer films consisted of top IrMn layer were 410 Oe, 60 Oe, 1.6 Oe, and 7.0 Oe, respectively. The minor MR curve of two free layers was performed the squarelike feature having a MR ratio of 8.7 % as the sum of 3.7 % and 5.0 %. The value of average magnetic field sensitivity (MS) was maintained at 2.0 %/Oe. Also, the magnetoresistance properties of the single-type and dual-type structure GMR-SV multilayer films consisted of bottom IrMn layer were decreased more than those of top IrMn layer. Two antiparallel states of magnetization spin arrays of the pinned and free layers in the dual-type GMR-SV multilayer films occurred the maximum MR value by the effect of spin dependence scattering.

The Fabrication of Porous Nickel Oxide Thin Film using Anodization Process for an Electrochromic Device

  • Lee, Won-Chang;Choe, Eun-Chang;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.407.1-407.1
    • /
    • 2016
  • Electrochromism is defined as a phenomenon which involves persistently repeated change of optical properties between bleached state and colored state by simultaneous injection of electrons and ions, sufficient to induce an electrochemical redox process. Due to this feature, considerable progress has been made in the synthesis of electrochromic (EC) materials, improvements of EC properties in EC devices such as light shutter, smart window and variable reflectance mirrors etc. Among the variable EC materials, solid-state inorganics in particular, metal oxide semiconducting materials such as nickel oxide (NiO) have been investigated extensively. The NiO that is an anodic EC material is of special interest because of high color contrast ratio, large dynamic range and low material cost. The high performance EC devices should present the use of standard industrial production techniques to produce films with high coloration efficiency, rapid switching speed and robust reversibility. Generally, the color contrast and the optical switching speed increase drastically if high surface area is used. The structure of porous thin film provides a specific surface area and can facilitate a very short response time of the reaction between the surface and ions. The large variety of methods has been used to prepare the porous NiO thin films such as sol-gel process, chemical bath deposition and sputtering. Few studies have been reported on NiO thin films made by using sol-gel method. However, compared with dry process, wet processes that have the questions of the durability and the vestige of bleached state color limit the thin films practical use, especially when prepared by sol-gel method. In this study, we synthesis the porous NiO thin films on the fluorine doped tin oxide (FTO) glass by using sputtering and anodizing method. Also we compared electrical and optical properties of NiO thin films prepared by sol gel. The porous structure is promised to be helpful to the properties enhancement of the EC devices.

  • PDF

A Case of Bronchiolitis Interstitial Pneumonitis (Bronchiolitis Interstitial Pneumonitis 1예)

  • Chi, Su Young;Ryu, Kyoung Ho;Lim, Dae Hun;Shin, Hong-Joon;Ban, Hee Jung;Oh, In-Jae;Kwon, Yong Soo;Kim, Kyu-Sik;Lim, Sung-Chul;Kim, Young-Chul;Choi, Yoo-Duk;Song, Sang-Yun;Seon, Hyun Ju
    • Tuberculosis and Respiratory Diseases
    • /
    • v.67 no.4
    • /
    • pp.364-368
    • /
    • 2009
  • Bronchiolitis interstitial pneumonitis (BIP), an unclassified and newly described interstitial pneumonia, has a combined feature of prominent bronchiolitis, interstitial inflammation, and fibrosis. It is distinct from bronchiolitis obliterans or bronchiolitis obliterans organizing pneumonia (BOOP). BIP has a better prognosis than common cases of interstitial pneumonia. However, BIP has a poorer prognosis than BOOP. BIP's response to corticosteroids is not as successful as BOOP's response to this treatment. We encountered the case of a 31-year-old woman with BIP with an initial presentation of dyspnea and a cough that had lasted for 3 months. The patient's chest CT scan demonstrated patchy ground glass opacities and multiple ill-defined centrilobular nodules in both lungs, suggesting military tuberculosis or nontuberculous mycobacterial infection. A video-assisted thoracoscopic lung biopsy resulted in the diagnosis of BIP. Clinical symptoms, pulmonary lesions, and pulmonary function tests were improved after oral glucocorticoid therapy.

fiber Orientation Effects on the Acoustic Emission Characteristics of Class fiber-Reinforced Composite Materials (유리섬유강화 복합재의 AR특성에 대한 섬유배향 효과)

  • Kim, Jung-Hyun;Woo, Sung-Choong;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.429-438
    • /
    • 2003
  • The effects of fiber orientation on acoustic emission(AE) characteristics have been studied for the unidirectional and satin-weave, continuous glass-fiber reinforced plastic(UD-GFRP and SW-GFRP) tensile specimens. Reflection and transmission optical microscopy was used for investigation of the damage zone of specimens. AE signals were classified as different types by using short time fourier transform(STFT) : AE signals with high intensity and high frequency band were due to fiber fracture, while weak AE signals with low frequency band were due to matrix and interfacial cracking. The feature in the rate of hit-events having high amplitudes showed a process of fiber breakages, which expressed the characteristic fracture processes of individual fiber-reinforced plastics with different fiber orientations and with different notching directions. As a consequence, the fracture behavior of the continuous GFRP could be monitored as nondestructive evaluation(NDE) through the AE technique.