• 제목/요약/키워드: Glass Envelope

검색결과 25건 처리시간 0.025초

양면형 BIPV 시스템의 커튼월 적용에 따른 온도 및 발전특성 분석 (Analysis of Temperature and Power Generation Characteristics of Bifacial BIPV System Applied into Curtain Wall)

  • 강준구;김용재;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제35권4호
    • /
    • pp.57-66
    • /
    • 2015
  • BIPV system not only produces electricity at building, but also acts as a material for building envelope. Thus, it can increase the economical efficiency of PV system by saving the cost for building materials. Bifacial solar cell can convert solar energy to electrical energy from both sides of the cell. In addition, it is designed as 3 busbar layout which is the same with ordinary mono-facial solar cells. Therefore, many of the module manufacturers can easily use the bifacial solar cells without changing their manufacturing equipments. Moreover, bifacial PV system has much potential in building application by utilizing glass-to-glass structure of PV module. However, the electrical generation of the bifacial PV module depends on the characteristics of the building surface which faces the module, as well as outdoor environment. Therefore, in order to apply the bifacial PV module to building envelope as BIPV system, its power generation characteristics are carefully evaluated. For this purpose this study focused on the electrical performance of the bifacial BIPV system through the comparative outdoor experiments. As a result, the power generation performance of the bifacial BIPV system was improved by up to 21% compared to that of the monofacial BIPV system. Therefore, it is claimed that the bifacial BIPV system can replace the conventional BIPV system to improve the PV power generation in buildings.

광기능성 창호시스템의 동절기 채광특성에 관한 목업연구 (Full-scale Mock-up Measurement of a Double Glazed Window System Equipped with Sunlight Controls)

  • 김곤
    • 한국태양에너지학회 논문집
    • /
    • 제28권4호
    • /
    • pp.35-42
    • /
    • 2008
  • Besides genuine skin and clothes, it is called that building is third skin for us. That means the skin of buildings is the most important factor for our man-made environment. The issues in designing the building envelope include the insulation, infiltration, ventilation and bridging in windows. Getting light into the space safely and providing views to outdoor, additionally, are key things with the building envelope design. A deep-rooted preference for full view is still alive with large area of glass. Balcony expansion is legalized in apartment houses, which causes lots of environmental problems. Without balcony space, the adjacent space to unshaded window is exposed to the direct sun. A window can have many layers and the inner space can be utilized with an automatic blind system. Recently, the refurbished version of a double-glazed window system has been developed for the purpose of minimizing energy loss occurred around windows. For the better daylight control with equipped blind system, a set of adjustment technique of blind slats was tested in a mock-up building and recommended the detail operation. Not surprisingly, the optimized blind system can be oriented to enhance the uniformity in light distribution and direct glare from the sky as well..

Structural glass panels: An integrated system

  • Bidini, G.;Barelli, L.;Buratti, C.;Castori, G.;Belloni, E.;Merli, F.;Speranzini, E.
    • Smart Structures and Systems
    • /
    • 제30권3호
    • /
    • pp.327-332
    • /
    • 2022
  • In building envelope, transparent components play an important role. The structural glazing systems are the weak element of the casing in terms of mechanical resistance, thermal and acoustic insulation. In the present work, new structural glass panels with granular aerogel in interspace were investigated from different points of view. In particular, the mechanical characterization was carried out in order to assess the resistance to bending of the single glazing pane. To this end, a special instrument system was built to define an alternative configuration of the coaxial double ring test, able to predict the fracture strength of glass large samples (400 × 400 mm) without overpressure. The thermal and lighting performance of an innovative double-glazing façade with granular aerogel was evaluated. An experimental campaign at pilot scale was developed: it is composed of two boxes of about 1.60 × 2 m2 and 2 m high together with an external weather station. The rooms, identical in terms of size, construction materials, and orientation, are equipped with a two-wing window in the south wall surface: the first one has a standard glazing solution (double glazing with air in interspace), the second room is equipped with the innovative double-glazing system with aerogel. The indoor mean air temperature and the surface temperature of the glass panes were monitored together with the illuminance data for the lighting characterization. Finally, a brief energy characterization of the performance of the material was carried out by means of dynamic simulation models when the proposed solution is applied to real case studies.

Relationship of the U-Factor and Chemical Structure with Applied Metal and Polymer Material Assembly in Curtain Wall Frame

  • Park, Tongso
    • 한국재료학회지
    • /
    • 제31권8호
    • /
    • pp.450-457
    • /
    • 2021
  • From measured thermal conductivity and modeling by simulation, this study suggests that U-factors are highly related to materials used between steel and polymer. The objective and prospective point of this study are to relate the relationship between the U-factor and the thermal conductivity of the materials used. For the characterization, EDX, SEM, a thermal conductive meter, and computer simulation utility are used to analyze the elemental, surface structural properties, and U-factor with a simulation of the used material between steel and polymer. This study set out to divide the curtain wall system that makes up the envelope into an aluminum frame section and entrance frame section and interpret their thermal performance with U-factors. Based on the U-factor thermal analysis results, the target curtain wall system is divided into fix and vent types. The glass is 24 mm double glazing (6 mm common glass +12 mm Argon +6 mm Low E). The same U-factor of 1.45 W/m2·K is applied. The interpretation results show that the U-factor and total U-value of the aluminum frame section are 1.449 and 2.343 W/m2·K, respectively. Meanwhile, those of the entrance frame section are 1.449 and 2.

The Visual Performance Evaluation of the Work planes with the Automated blind Control in Small Office Spaces

  • Park, Doo-Yong;Yoon, Kap-Chun;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • 제14권1호
    • /
    • pp.15-22
    • /
    • 2014
  • Among the various building envelope elements, the glass area takes up the largest portion in the office building design. However, a large area of glass can cause problems such as excessive solar radiation, thermal comfort, and glare. Thus it is important to install the glass area to an appropriate level, and control solar radiation and inflow of daylight with blind devices. This study aims to improve the visual performance of the work plane through the automatic control of the venetian blinds. A total of eight kinds of control strategies were chosen; Case 1 does not control the blinds, Case 2 with the blind slats fixed at the angle of 0 degree, Case 3 to 6 using the existing blind control programs, and Case 7 and 8 with improved blind control. Case 3 with 90 degrees had the best energy performance, but the average indoor illuminance was 113lux, which is below the standards. Cases 4 and 5 showed higher levels of interior daylight illuminance with the average of 281lux and 403lux respectively. However, the fixed angles may have difficulties controlling excessive direct sunlight coming into the room and may cause glare. Cases 6 and 7 used sun tracking angle control and cut-off angle control, and the average interior illuminance was measured 250lux and 385lux respectively. Case 8 used the cut-off angle control in an hourly manner, satisfying the standard illuminance of 400lux with an average interior illuminance of 561lux. It was evaluated to be the best method to control direct solar radiation and to guarantee proper level of interior illumination.

유리용해로 가스처리 건식 Bag Filter의 개선에 관한 연구 (A Study on the Improvement of Dry Bag Filter Treatment System Regarding harmful gas of Glass Recuperator)

  • 이성진;서만철
    • 환경위생공학
    • /
    • 제23권3호
    • /
    • pp.9-22
    • /
    • 2008
  • This study was conducted to develop a system that processes harmful gases and dust, which being generated in the production of micro-inorganic fabric. This can be obtained by melt spinning raw materials such as agalmatolite, fluorspar, limestone, silica under high temperature at $1500-1600^{\circ}C$ in a glass recuperator using a dry method by Cyclone Reactor or Envelope Type (ET) type Bag Filter. If the number of the members of Korea Glass Industry Association reaches up to 45, the damage of the harmful gas being generated in recuperator should not be small. In addition, research of existing facilities showed the most of harmful gas treatment facilities which adopt wet treatment or semi-dry treatment process. This was caused the problems for wastewater and the second pollutive materials. Moreover, in the dust collecting facility behind recuperator, it is also problematic that electric dust collector requires enormous initial investment. We have researched various methods to show both economic and efficient new processes for the preventive facilities of recuperator. As the result of the experiments, the removal efficiencies of HF and SOx were 99% and 87%, respectively. Although it was insignificant reaction, a pretty much interesting result that NOx showed an absorption reaction with $Ca(OH)_2$(removal efficiency was more than 25%) was obtained.

이중외피 창호특성에 따른 계절별 실내 주광환경 평가 (Evaluation of Seasonal Daylighting Performance according to Window Compositions of Double Skin Facades)

  • 임태섭;강승모
    • 한국실내디자인학회논문집
    • /
    • 제24권4호
    • /
    • pp.91-98
    • /
    • 2015
  • Double skin façade is known that several features affected the building energy and daylighting performance. That is why the envelope is able to consist of all architectural materials such as glass, aluminum, wood and insulation for vision of residents and workers in buildings. Its specifications is very diverse according to the building designers and building owners. In recent times, visual environment became a major focus and resulted in the development of cutting edge engineering of diverse glazing systems and shading devices by growing interests of friendly environment. Thus this research has evaluated the fluctuations of interior lighting and atmospheric conditions based on double skin facade systems. Especially in terms of daylighting environment as dependent on solar variations, this research provides quantitative analysis of interior lighting conditions and how it affects the living conditions as well as improve the design of interior spaces.

창의 종류 및 차폐계수 변화와 건물 향에 따른 단독주택의 에너지요구량 분석 (A study on analysis of energy consumption of Detached house by U-value and SCs of windows and Building Orientation)

  • 정수희;박효순;이병연
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.96-103
    • /
    • 2012
  • Annual energy consumption in detached houses are affected mainly by thermal performance of envelope. In particular the performance of glasses are critical due to global wanning and climatic change. Therefore, this research analyzes annual consumption of cooling and heating energy with various combination of U-value, shading coefficient and building orientation. The simulation results shows that shading coefficient of glazing contributes to the changes of proportion of heating and cooling energy demand and the optimized shading coefficient for minimizing energy consumption varies with buildings orientation.

플루오르화중금속 유리의 적외선에지 및 산화물(불수물) 흡수 (IR Edge and Oxide Impurity Absorption in Heavy Metal Fluoride Glasses)

  • 정기호
    • 한국세라믹학회지
    • /
    • 제22권3호
    • /
    • pp.29-34
    • /
    • 1985
  • The IR spectra of he heavy metal fluoride glasses showed peaks at $1, 400cm^{-1}$ or $1, 100cm^{-1}$ due to metal oxyfluoride impurities. The intensity of this band and hence the oxide impurity content of the glass could be reduced considerably by the use of reactive atmosphere melting under $CCl_4$ In comparison with the fundamental IR absorption band of heavy metal oxides the oxide impurity bands observed in the heavy metal fluoride glasses are multiphonon bands due to a 2-phonon absorption process. The envelope of the a vs. v curve beyond thue fundamental region shows the exponential fall off of a with increasing v-typical of intrinsic multiphonon absorption. In the multiphonon region the amount of structure is intermediate between that observed for covalent solids and that for ionic solids.

  • PDF

양면형 BIPV 시스템의 설치환경에 따른 발전특성 분석 (Analysis of Generation Characteristics of a Bifacial BIPV System According to Installation Methods)

  • 강준구;김진희;김준태
    • Current Photovoltaic Research
    • /
    • 제3권4호
    • /
    • pp.121-125
    • /
    • 2015
  • BIPV system is one of the best ways to harness PV module. The BIPV system not only produces electricity, but also acts as a building envelope. Thus, it has the strong point of increasing the economical efficiency by applying the PV modules to the buildings. Bifacial solar cells can convert solar energy to electrical energy from both sides of the module. In addition, it is designed as 3 busbar layout which is the same with ordinary mono-facial soalr cells. Therefore, many of the module manufacturers can easily produce the bifacial solar cells without changing their manufacturing equipment. Moreover, bifacial BIPV system has much potential in building application by utilizing glass to glass structure. However, the performance of bifacial solar cells depends on a variety of factors, ranging from the back surface to surrounding conditions. Therefore, in order to apply bifacial solar cells to buildings, an analysis of bifacial PV module performance should be carried out that includes a consideration of various design elements, and reflects a wide range of installation conditions. As a result it found that the white insulation reflector type can improve the performance of the bifacial BIPV system by 16%, compared to the black insulation reflector type. The performance of the bifacial BIPV was also shown to be influenced by inclination angle, due to changes in both the amount of radiation captured on the front face and the radiation transmitted to the rear face through the transparent space. In this study is limited design condition and installation condition. Accordingly follow-up researches in this part need to be conducted.