• Title/Summary/Keyword: Glass Ball

Search Result 141, Processing Time 0.023 seconds

EFFECT OF $CEO_2$ ADDITION IN GLASS COMPOSITION ON THE STRENGTH OF ALUMINA-GLASS COMPOSITES (알루미나-유리 복합체용 글래스의 조성에서 $CeO_2$의 함량변화가 강도에 미치는 영향)

  • Lee, Hwa-Jin;Song, Kwang-Yeob;Kang, Jeong-Kil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.595-605
    • /
    • 2000
  • Dental ceramics have good aesthetics, biocompatibility, low thermal conductivity, abrasion resistance, and color stability. However poor resistance to fracture and shrinkage during firing process have been limiting factors in their use, particularly in multiunit ceramic restorations. A new method for making all-ceramic crowns that have high strength and low processing shrinkage has been developed and is referred to as the Vita In-Ceram method. This study was performed to investigate the effect of $CeO_2$ addition in borosilicate glasses on the strength of alumina-glass composites. Porous alumina compacts were prepared by slip casting and sintered at $1,100^{\circ}C$ for 2 hours. Dense composites were made by infiltration of molten glass into partially sintered alumina at $1,140^{\circ}C$ for 4 hours. Specimens were polished sequentially from #800 to #2000 diamond disk. and the final surface finishing on the tensile side was received an additional polishing sequence through $1{\mu}m$ diamond paste. Biaxial flexure test was conducted by using ball-on-three-ball method at a crosshead speed of 0.5mm/min. To examine the microstructural aspect of crack propagation in the alumina-glass composites, Vickers-produced indentation crack was made on the tensile surface at a load of 98.0 N and dwell time of 15 sec, and the radial crack patterns were examined by an optical microscope and a scanning electron microscope. The results obtained were summarized as follows; 1. The porosity rates of partially sintered alumina decreased with the rising of firing temperature. 2. The maximum biaxial flexure strength of 423.5MPa in alumina-glass composites was obtained with an addition of 3 mol% $CeO_2$ in glass composition and strength values showed the aspect of decrease with the increase of $CeO_2$ content. 3 The biaxial flexure strength values of alumina-glass composites were decreased with rising the firing temperature. 4. Observation of the fracture surfaces of alumina-glass composites indicated that the enhancement of strength in alumina-glass composites was due to the frictional or geometrical inter-locking of rough fracture surfaces and ligamentary bridging by intact islands of materials left behind the fracture front.

  • PDF

Non-Destructive Detection of Hertzian Contact Damage in Ceramics

  • Ahn, H.S.;Jahanmir, S.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.114-121
    • /
    • 1995
  • An ultrasonic technique using normal-incident compressional waves was used to evaluate the surface and subsurface damage in ceramics produced by Hertzian indentation. Damage was produced by a blunt indenter (tungsten carbide ball) in glass-ceramic, green glass and silicon nitride. The damage was classified into two types; (1) Hertzian cone crack, in green glass and fine grain silicon nitride, and (2) distributed subsurface micro fractures, without surface damage, produced in glass ceramic. The ultrasonic technique was successful in detecting cone craks. The measurement results with the Hertzian cone cracks indicated that cracks perpendicular to the surface could be detected by the normal-incident compressional waws. Also shown is the capability of normal-incident compressional waves in detection distributed micro-sized cracks size of subsurface microfractures.

Push-Shear Bond Strength of Veneering Ceramics and Zirconia Ceramic (비니어 세라믹과 지르코니아 세라믹의 Push-Shear 결합강도)

  • Ahn, Jae-Seok;No, Hyeong-Rok;Lee, Jung-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.9
    • /
    • pp.384-394
    • /
    • 2015
  • The purpose of this study was to evaluate the push-shear bond strength between five commercial zirconia veneering ceramics and zirconia core cylinder, and to investigate the effect of biaxial flexural strength and zirconia liner glass treatments. The biaxial flexural strengths of the veneering ceramics were evaluated by a piston-on-three-ball test. The bond strengths between the Y-TZP cylinder and zirconia veneering ceramics were evaluated using the push-shear bond strength test. The data was analyzed using two-way ANOVA and Scheffe's test. The biaxial flexural strength of Cercon ceram kiss (CE) was higher than those of the other groups. The glass-treated and Triceram zirconia groups showed the highest value and the Creation ZI(CR) showed the lowest. In all groups, the liner glass treatment groups showed significantly higher push-shear bond strength than those without(P<0.05). The liner glass treatments of zirconia can improve the bond strength between the zirconia ceramic core and veneering ceramics.

Wear Behavior of Alumina-glass Composites Prepared by Melt Infiltration (용융침투법으로 제조한 알루미나-유리 복합체의 내마모 특성)

  • 이세종
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.881-885
    • /
    • 2003
  • Wear and friction properties of the alumina-glass dental ceramics were evaluated in exact in vitro environment (artificial saliva at 37$^{\circ}C$), using a ball-on-disc apparatus, at contact loads from 49 N to 196 N and with the disc rotating at 120 rpm up to 10$^{6}$ cycles to investigate the wear behavior. As the load increased from 49 N to 196 N, the friction coefficient of 0.025 was maintained, however, the volumetric wear rate rose from 2.18 ${\times}$10$^{-9}$TEX>$mm^{3}$/Nㆍm to 2.35 ${\times}$10$^{-6}$TEX>$mm^{3}$/Nㆍm. Experimental results indicated that the wear behavior of the alumina-glass composites with a sliding distance of 4.4 km was a typical adhesive wear, which was applicable for orthodontia ceramic brackets.

Preparation of Aluminum Flake Powder by Recycling of Foil Scrap (알루미늄 호일 스크랩 재활용에 의한 플레이크 분말 제조)

  • 홍성현;김병기
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.50-55
    • /
    • 2000
  • Recycling technology of aluminum foil scraps into aluminum flake powder by ball milling in dry or wet conditions was studied. Aluminum foil were laminated each other, elongated through microforging by the falling balls, fragmented into small foils and then changed into flake powder during ball milling. It is also possible to recycle foil scraps with thickness less than $60\mu\textrm{m}$ into aluminum paste by wet ball milling. As initial foil thickness decreases, foil is easily milled to flake powder by wet milling in mineral spirits. the appearance and the opaque character of glass painted with aluminum paste obtained by wet milling of foils are similar to those of aluminum paste made by ball milling of gas atomized powder.

  • PDF

The Effects of Sealing Materials in Cone Crack Formation of Soda-lime Glass by Ball Impact (볼 충격을 받는 유리의 콘크랙형성에 대한 실링재료의 영향)

  • Kim, Moon-Saeng;Heo, Jin;Lee, Hyun-Chul;Kim, Ho-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.156-163
    • /
    • 2003
  • In order to investigate the possibility of punching process of brittle material by ball impact, the effects of sealing materials about impact damage of soda-lime glass by small spheres were evaluated experimentally. The using of sealing materials in the development of perfect cone crack was more effective than no using of sealing materials. At the sealing materials condition, in the case of 5mm-thick specimen, Copper and PMMA sealing were more effective in producing a perfect cone formation than the other sealing materials. And in the case of 8mm-thick specimen, Aluminum sealing was most effective in producing a perfect cone formation. The impact velocity range over which perfect cones were formed was influenced by both the thickness of specimen and sealing materials. By a proper selection of sealing materials, the application fur industrial technology for hole (or nozzle) punching process of brittle materials is expected.

The Fabrication of PVA Polymer Coated on the Surface of B4C Nanocomposite by High Energy Ball Mill (고에너지볼밀을 이용한 PVA 고분자가 표면 코팅된 B4C 나노복합재 제조)

  • Uhm, Young-Rang;Kim, Jae-Woo;Jung, Jin-Woo;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.110-114
    • /
    • 2009
  • Mechanical coating process was applied to form 89 %-hydrolyzed poly vinyl alcohol (PVA) onto boron carbide ($B_4C$) nanopowder using one step high energy ball mill method. The polymer layer coated on the surface of B4C was changed to glass-like phase. The average particle size of core/shell structured $B_4C$/PVA was about 50 nm. The core/shell structured $B_4C$/PVA was formed by dry milling. However, the hydrolyzed PVA of $98{\sim}99%$ with high glass transition temperature ($T_g$) was rarely coated on the powder. The $T_g$ of polymer materials was one of keys for guest polymer coating on to the host powder by solvent free milling.

The Impact Response and Impact Stress of Glass/Epoxy Laminated Composite Plates (Glass/Epoxy 적층 복합판의 충격 응답 및 충격 응력)

  • Kim, Moon-Saeng;Kim, Nam-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.4
    • /
    • pp.29-39
    • /
    • 1990
  • The purpose of this research is to analyze the impact behaviors of laminated composite plates subjected to the transverse low-velocity impact by the steel ball. A plate finite element model based on Whitney and Pagano's the first-order shear deformation theory (FSDT) in conjunction with experimental static contact laws is formulated and then compared with the results of the impact experiments. Because the input data and the output data printed at every integration time step are lots of amount, these are interactively poecessed by the developed pre-processor(PREPLOT) and postprecessor(POSTPLOT). All results from these procesors are automatically generated by CALCOMP plotter. Test materials are glass/expoxy composite materials. The specimens are composed of [$0^{\circ} /45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}/]2s\ and \[90^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}/90^{\circ}/$]2s stacking sequences and have $4.5^t{\times}200^w{\times}200^l$(mm) and $4.5^t{\times}300^w{\times}300^l$(mm) dimensions.

  • PDF

Ball Velocity Changes Depending on the Different Linear Momentum of Putter Head during the Putting Strokes (퍼팅 스트로크에서 퍼터의 선 운동량 크기에 따른 볼의 이동 속도 변화에 관한 연구)

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.83-88
    • /
    • 2007
  • The purpose of this study was to investigate the ball velocity changes depending on the different linear momentum of putter head. For this study, two different moving conditions(25cm free fall and 35cm free fall) of putter head were set. And two different types of ground conditions were used which are artificial grass green($180cm{\times}600cm{\times}1cm$) and glass green($40cm{\times}130cm{\times}1cm$). Movements of putter head and ball were recorded with 2 HD video cameras(60 Hz, 1/500s shutter speed). Small size control object($18.5cm{\times}18.5cm{\times}78.5cm$) was used in this study. Ball and putter head velocities were calculated by the First Central Difference Method(Hamill & Knutzen, 1995). Linear momentum of ball and putter head were calculated with mass and its velocities. Before impact, the velocity of the putter head of 35cm free fall was about 30% greater than that of the putter head of 25cm free fall. Linear momentum of putter head of 35cm free fall was about 0.355-0.364kg m/s and 25cm free fall was 0.251 kg m/s. After impact, putter head lost its linear momentum about 14-19% and adjusting time of putter head after impact would be 0.1 second. After 0.1 second, putter moved the route same as before impact. Maximum ball velocities were appeared 0.08s-0.10s after impact no matter what the ground conditions are. Ball velocities struck by 35cm free fall were 30 % faster than 25cm free fall. Linear momentum of ball struck by putter head was greater than that of expected amount because the moving ball has translational energy and rotational energy. Future study must treat three things. One is ball must struck by the different putters with different materials. Another is two-piece ball and three-piece ball should be used for the same condition studies. The other is height of center of rotation of club should be changed. In this study, the height of center of rotation of club head is 71cm from the ground. But recently many golfers used the long putter. Therefore next study should apply the different height of center of rotation of club head.

Damage mechanism of particle impact in a ${Al_2}}O_3}-TiO_2$plasma coated soda-lime glass (${Al_2}}O_3}-TiO_2$ 플라즈마 코팅된 유리의 입자충격에 의한 손상기구)

  • Suh, Chang-Min;Lee, Moon-Hwan;Hong, Dea-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.529-539
    • /
    • 1998
  • A quantitative study of impact damage of ${Al_2}}O_3}-TiO_2$ plasma coated soda-lime glasses was carried out and compared with that of the uncoated smooth glass specimen. The shape of cracks by the impact of steel ball was observed by stereo-microscope and the decrease of the bending strength due to the impact of steel ball was measured through the 4-point bending test. At the low velocity, cone cracks were occurred. As the impact velocity increases, initial lateral cracks were propagated on the slanting surface of a cone crack, and radial cracks were generated at the crushed site. When the impact velocity of steel ball exceeds the critical velocity, the contact site of specimen was crushed due to plastic deformation and then radial and lateral cracks were largely grown. Crack length of coated specimens was smaller than that of uncoated smooth specimen due to the effect of coating layer on the substrate surface. According to impact velocity, the bending strength of coated specimens had no significant difference, compared with that of the uncoated smooth specimen. But this represents that the bending strength of coated specimens was increased, considering the effect of sand blasting damage which was performed to increase the adhesion force of coating layer.