• Title/Summary/Keyword: Glass/glass-ceramic

Search Result 1,304, Processing Time 0.04 seconds

A Study on the Porous Glass-Ceramics in the Phosphate System (인산염계 다공질 결정화 유리에 관한 연구)

  • 박용완;현부성;김태호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.858-864
    • /
    • 1995
  • A porous glass-ceramics body was prepared in the phosphate system. The glass composition of 47.2CaO-22.2TiO2-30.6P2O5 (mol%) containing a few weight percent of ZrO2 was suitable for a mother glass of a porous glass-ceramics. The dense glass-ceramics body was made by a two-step heat treatment of the mother glass. The crystalline phases of the glass-ceramics were $\beta$-Ca3(PO4)2 and CaTi4(PO4)6. The $\beta$-Ca3(PO4)2 phase could be selectively leached out with HCl solution and thus a crystalline $\beta$-Ca3(PO4)2 skeleton was remained. The dimension and shape of the porous glass-ceramics were nearly the same as the those of the first formed glass. The specific surface area and average proe radius of the porous glass-ceramics were 19$m^2$/g and 22 nm, respectively.

  • PDF

Characteristics of Opal Glass by Calcium Phosphate Opacifier for a LED Light Diffuser (Calcium Phosphate 유백제 투입량에 따른 LED Diffuser용 유백유리의 특성)

  • Ku, Hyun-Woo;Lim, Tae-Young;Hwang, Jonghee;Kim, Jin-Ho;Lee, Mi-Jai;Shin, Dong Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • We fabricated translucent opal glass to replace the polycarbonate diffuser in LED lighting systems in order to solve the durability problem. Batch materials of opal glass with a composition of calcium phosphate were created and melted at $1550^{\circ}C$, and the effect of opaqueness was identified by an addition of 1~7% calcium phosphate as an opacifier raw material. As a result, translucent opal glass was obtained by the melting of the mixed batch materials with a composition of more than 5% calcium phosphate glass at $1550^{\circ}C$ for 2 hrs, which had excellent optical properties for the diffuser of a LED lighting system with no dazzling from direct light by a high haze value exceeding 90% and a low parallel transmittance value of about 5%. For the thermal properties, the thermal expansion coefficient was found to be $5.6{\sim}5.9{\times}10^{-6}/^{\circ}C$ and the softening point was $874{\sim}884^{\circ}C$. In addition, good thermal properties such as good thermal shock resistance and feasibility for use with a general manufacturing process during the forming of glass tubes and bulbs were noted. Therefore, it is concluded that this translucent opal glass can be used as a glass diffuser material for LED lighting due to its high heat resistance and high durability as a replacement for a polycarbonate diffuser.

The Strength of Material with the Amount and the Particle Size of Glass on Anorthite System for LTCC (Anorthite계 LTCC소재에서 Glass 입도와 함량 변화에 따른 강도 특성)

  • Gu, Sin-Il;Shin, Hyo-Soon;Hong, Youn-Woo;Yeo, Dong-Hun;Kim, Jong-Hee;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.864-868
    • /
    • 2010
  • Among LTCC material for substrate, the crystallized anorthite system was mainly studied as high strength material. However, specific factors that have affected on strength of material were studied insufficiently on anorthite system. In this study, the composition of anorthite glass was Ca-Al-Si-Zn-O. The changes of phase and microstructure were observed with the amount and the particle size of glass and the sintering temperature. It was studied that the factors affected on the strength of material. Phases of anorthite and $ZnAl_2O_4$ were formed with the increase of sintering temperature. The $Al_2O_3$ phase was increased with $Al_2O_3$ amount, acted as filler, and the strength of material is increased with $Al_2O_3$ phase. But phases of anorthite and $ZnAl_2O_4$ didn't affect on the strength of material. In the case of 60 vol% glass amounts and below $3.2\;{\mu}m$ of glass particle size, the strength of material was decreased. It is thought that the decrease of strength was due to non-homogeneous mixing between glass powder and filler.

Fabrication and Adhesion Strength Evaluation of Glass Sealants for Ceramic to Ceramic Component Joining (세라믹-세라믹 컴포넌트 접합용 글라스 실란트의 제조 및 접합력 평가)

  • Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.89-94
    • /
    • 2019
  • Glass base sealant is required as a ceramic-ceramic joining material between α-alumina insulation cap and β-alumina electrolyte tube in the development of NaS battery cell package for electrical energy storage system. The fabrication of glass frit by thermal quenching method, phase analysis, particle size analysis, coefficient of thermal expansion and surface roughness according to the glass compositions were analyzed for the fabrication of glass sealing paste for ceramic-ceramic joining. Also, a new evaluation method of the adhesion strength of glass sealant at the small area in ceramic-ceramic joining component was proposed using conventional Dage bond tester that was used to measure the adhesion of solder ball joint.

Development and Characterization of Translucent Opal Glass for Diffuser of LED Lighting (LED 조명용 반투명 유백유리 Diffuser 조성 개발 및 특성)

  • Ku, Hyun-Woo;Lim, Tae-Young;Hwang, Jonghee;Kim, Jin-Ho;Lee, Mi-Jai;Shin, Dong Wook
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.650-657
    • /
    • 2012
  • For the purpose of improving the durability problem, translucent opal glass was fabricated as a substitute for the polycarbonate diffuser of LED lighting. Calcium phosphate was used as an opacifier of opal glass and melted in an electric furnace. The opaque effect was identified according to the change of the cooling procedure. As results, translucent opal glass was obtained by the melting of a batch with a composition of 3.8% calcium phosphate at $1550^{\circ}C$ for 2 hrs and then the cooling of the material in the furnace. For the cooling condition of the glass sample, HTCG (High Temperature Cooled Glass) was found to have better optical properties than LTAG (Low Temperature Annealed Glass). It had excellent optical properties for a diffuser of LED lighting, with no dazzling from direct light due to its high haze value of over 99% and low parallel transmittance value of under 1%. For the thermal properties, it had an expressed thermal expansion coefficient of $5.7{\times}10^{-6}/^{\circ}C$ and a softening point of $876^{\circ}C$; it also had good thermal properties such as good thermal shock resistance and was easy to apply to the general manufacturing process in the forming of glass tubes and bulbs. Therefore, it is concluded that this translucent opal glass can be used as a glass diffuser material for LED lighting with high heat resistance and high durability; this material is suitable as a substitute for polycarbonate diffusers.

Effect of Glass Additions on the Adhesion and Electrical Conductivity of Photoimageable Silver Paste

  • Lee, Eun-Heay;Heo, Yu-Jin;Kim, Hyo-Tae;Kim, Jong-Hee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.63-70
    • /
    • 2011
  • Anorthite forming glass frits in amounts up to 25 vol% of the silver powder were added to improve the adhesion between the conductor pattern formed by thick film photoimageable process and the low temperature co-fired ceramics (LTCC) substrate. The sheet resistance of the conductor pattern was raised from 0.13 ${\Omega}/{\square}$ to 2.25 ${\Omega}/{\square}$ as the volume percentage of glass frit increased up to 25 vol%. The adhesion strength was improved with this glass frit increase, but it decreased when the glass content exceeded 20 vol% which are possibly attributed to the liquid pool effect and the reduced fracture toughness in the interface between conductor and LTCC layer. The shrinkage of the width of the conductor pattern decreased with the addition of glass contents.

Shrinkage Free Sintering of Low Temperature Cofired Ceramics by Glass Infilteration

  • Yeo, Dong-Hun;You, Jung-Hun;Shin, Hyo-Soon;Kim, Jong-Hee
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1218-1219
    • /
    • 2006
  • The shrinkage variation of Low Temperature Cofired Ceramics(LTCC) limits the size of the substrates that impose limitations on embedded passive components. This paper focuses on the method of minimizing or controlling planar shrinkage and reducing distortion during firing. The laminated sheets of alumina and glass were sintered at varying temperature, and depending on the amount of the glass ceramics. When the sintered of multi-layer structure with $Al_2O_3/Glass/Al_2O_3$, the glass infiltrated entirely into $Al_2O_3$ layer at the temperature of about $950^{\circ}C$ or higher.

  • PDF

Study on Thermal Properties and Plasma Resistance of MgO-Al2O3-SiO2 Glass (MgO-Al2O3-SiO2계 유리의 열물성과 내플라즈마성 연구)

  • Yoon, Ji Sob;Choi, Jae Ho;Jung, YoonSung;Min, Kyung Won;Im, Won Bin;Kim, Hyeong-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.61-66
    • /
    • 2021
  • In this study, we studied the alternative of plasma resistant ceramic parts that constitute plasma chambers in the semiconductor dry etching process. MgO-Al2O3-SiO2(MAS) glass was made of 13 types of glass using the Design Of Experiments(DOE) and the effect on thermal properties such as glass transition temperature and crystallization temperature depending on the content of each composition and etching resistance to CF4/O2/Ar plasma gas. MAS glass showed excellent plasma resistance and surface roughness up to 20 times higher than quartz glass. As the content of Al2O3 and MgO increases, the plasma resistance is improved, and it has been confirmed that it has an inverse relationship with SiO2.

Direct Sealing Glass-Ceramics to Metal (직접 결합방법에 의한 Glass-Ceramics과 금속의 접합)

  • Kim, Hwan;Lee, Ki-Kang
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.2
    • /
    • pp.99-104
    • /
    • 1981
  • Glass-ceramics possessed a number of characteristics which suggested their suggested their use for sealing to metals. The choice of particular glass-ceramics compositions for this application is governed by various factors, including workability of the glasses, thermal expansion characteristics and the matching of these to appropriate metals. Other properties, such as mechanical strength, determined the performance of glass-ceramics to metal seals. The purpose of the present study was to investigate direct sealing behaviour of copper to $Li_2O-ZnO-SiO_2$ system glass-ceramics. The design of the seal was a concentric seal which might contribute to the strong bond formation by providing compressive stress during thermal excursions. Tensile strengths of sealing layers were measured by Instron test machine. The layers were examined by electron probe microanalyzer. Crsystallization rate was increased with the amount of ZnO or $Li_2O$, and ZnO increased the sealing strength, but $Li_2O$ lowered it. Sealing mechanism was due to the formation of metal oxides, which acted as binder between copper and glass-ceramics. The nickle-plated copper seal with 10% $Li_2O$ and 30% ZnO was the most strong seal, and its sealing strength was more than 56kg/$\textrm{cm}^2$.

  • PDF

Fabrication and characterization of glass with E-glass fiber composition by using silica-alumina refused coal ore (사암계 석탄폐석을 활용한 E-glass fiber 조성의 유리 제조 및 특성)

  • Lee, Ji-Sun;Lim, Tae-Young;Lee, Mi-Jai;Hwang, Jonghee;Kim, Jin-Ho;Hyun, Soong-Keun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.4
    • /
    • pp.180-188
    • /
    • 2013
  • The glass of E-glass fiber composition was fabricated by using refused coal ore which is obtained as by-product from Dogye coal mine in Samcheok. We used silica-alumina refused coal ore which has low carbon content relatively, and the amount of refused coal ore has been changed from 0 to 35 % in batch composition. E-glass was fabricated by the melting of mixed batch materials at $1550^{\circ}C$ for 2 hrs with different refused coal ore composition of 0~35 %. We obtained a transparent and clear glass with high visible light transmittance value of 81~84%, thermal expansion coefficient of $5.39{\sim}5.61{\times}10^{-6}/^{\circ}C$ and softening point of $851{\sim}860^{\circ}C$. The glass fiber samples were also obtained through fiberizing equipment at $1150^{\circ}C$, and tested chemical resistance and tensile strength to evaluate the mechanical property as a reinforced glass fiber of composite material. As the result, we identified the properties of E-glass fiber by using refused coal ore are plenty good enough compare to that of normal E-glass without refused coal ore, and confirmed the possibility of refused coal ore as for the raw material of E-glass fiber.