• Title/Summary/Keyword: Ginsenosides Rg1

Search Result 393, Processing Time 0.026 seconds

Effect of Ginseng Saponin on Hypothalamus-Pituitary- Adrenal Axis under Stress in Mice

  • Do Hoon Kim;Jun
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.83-89
    • /
    • 1998
  • Ginseng total saponins (GTS) injected intracerebroventricularly (i.c.v.) at doses from 0.1-1 vs inhibited the i.c.v. injection stress-induced plasma corticosterone levels in mice. The inhibitory action of GTS was blocked by co-administered NG-nitro-L-arginine methyl ester (L-NAME; 1.5 us, i.c.v.), an. inhibitor of nitric oxide synthase (NOS). Of the ginsenosides Rbl, Rba, Rc, Rd, Re, Rf, Rgl,20(S)-Rg3, and 20(R)-Rg3 injected i.c.v. at doses from 0.01 to 0.3ug(or 1 uE),20(5)-Rg3 and Rc significantly inhibited the o.c.v. injection stress-induced Plasma corticosterone levels. The inhibitory actions of 20(S)-Rg3 and Rc were blocked by co-administered L-NAME (1.5 n, i.c.v.). These results suggest that G75, 20(S)-Rg3 and Rc may inhibit the i.c.v. injection stress-induced hypothalamo-pituitary-adrenal response by inducing NO production in the brain.

  • PDF

Relationship Between Ginsenoside Content and Stem Color Intensity of Panax ginseng (경색별인삼근(莖色別人蔘根)의 Ginsenoside 함량(含量))

  • Park, Hoon;Parklee, Qwi-Hee;Yoo, Ki-Jung
    • Applied Biological Chemistry
    • /
    • v.25 no.4
    • /
    • pp.211-217
    • /
    • 1982
  • Ginsenosides in epidermis·cortex(EC) and xylem-pith(XP) of main body of Panax ginseng(var. atropurpureacaulo) root were investigated in relation to dark purple area on stem. Pattern of ginsenosides, ratio of protopanaxatriol(PT) to diol(PD) and total ginsenoside content were significantly different between EC ana XP, and not related with stem color. The increasing trend of total ginsenosides with decreasing in purple area on stem needs to be tested with greater sample size. The order of ginsenoside content was $Rb_1>Rg_1>Re>Rc>Rg_2>Rb_2>Rf>Rd$ for EC, $Rg_1>Rb_1>Rg_2>Re>Rb_2>Rc>Rf>Rd$ for XP. PT/PD was 1.08 for EC,1.95 for XP. Since total ginsenoside content was 3 times higher in EC than in XP and weight of two parts was almost same, the content of ginsenosides of main body mostly depends on those of EC.

  • PDF

Stimulatory Effect of Ginsenosides on $pp60^{c-src}$ Protein Tyrosine Kinase

  • Hong, Hee-Youn;Park, Seon-Yang;Lee, Seung-Ki;Yoo, Gyurng-Soo;Choi, Jung-Kap
    • Archives of Pharmacal Research
    • /
    • v.16 no.2
    • /
    • pp.114-117
    • /
    • 1993
  • Ginsenosides present in the roots of panax ginseng C.A. Meyer were shown to induce a stimulatory effect on the overexpressed cellular chicken c-src protein tyrossine kinase in NH3T3 cells. Among 4 ginsenosides studied $(G-Rb_2,\;G-Rc,\;G-Re\;and\;G-Rg_1),\;G-Rg_1$ showed the most stimulatory effect at $16.7\mu{g/ml}$ ginsenoside concentration increasing the activity by 2-4 times. Inhibitors of either protein synthesis or RNA synthesis blocked the activation of c-src proein tyrosine kinase. These results suggest that the csrc kinase activation apprars to involve an increase in the amount of protein of the kinase by transcriptional control mechanism rather than an increase in the kinase activity.

  • PDF

Development of Consumer demand Ginseng Products Using Saponin Modification Techniques (사포닌 변환에 의한 맞춤형 인삼제품개발)

  • Yang, Deok-Chun;Choi, Kwang-Tae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.8-8
    • /
    • 2012
  • Ginseng have been traditionally used for strengthening immunity, providing nutrition and recovering health from fatigue. Recently, pharmaceutical activities of ginseng roots have been proven by many researches, and ginseng has become a world-famous medicinal plant. Ginseng saponin, ginsenoside, is one of the most important secondary metabolite in ginseng which has various pharmacological activities. Many studies have aimed to convert major ginsenosides to the more active minor ginsenoside Rg3 for consumer demand ginseng product. Microbial strain GS514 strain was isolated from soil around ginseng roots for enzymatic preparation of ginsenoside Rg3, which strain shows strong ability of converting ginsenoside Rb1and Rd into Rg3 in the solution with NaCl. The gene encoding a ${\beta}$-glucosidase from this GS514 was cloned and expressed in the BL21 (DE3) strain of Escherichia coli. The recombinant enzyme was purified and characterized. The molecular mass of purified was 87.5 kDa, as determined by SDS-PAGE. The gene sequence revealed significant homology to the family 3 glycoside hydrolases. The purified single enzyme also catalyzed the conversion of ginsenoside Rb1 into Rg3. This target enzyme will be able to produce as much saponin for consumer demand ginseng product. Anti-apoptotic proteins bind with pro-apoptotic proteins to induce apoptosis mechanism. Over expression of these anti-apoptotic proteins lead to several cancers by preventing apoptosis. Docking simulations were performed for anti-apoptotic proteins with several ginsenosides from Panax ginseng. Our finding shows ginsenosides particularly Rg3, Rh2 and Rf have more binding affinity with apoptotic proteins. Further, these docking system of each ginsenosides can be extended to experimental screen system for further brief confirmations of several diseases.

  • PDF

Increase in apoptotic effect of Panax ginseng by microwave processing in human prostate cancer cells: in vitro and in vivo studies

  • Park, Jun Yeon;Choi, Pilju;Kim, Ho-kyong;Kang, Ki Sung;Ham, Jungyeob
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • Background: Ginseng, which is widely used in functional foods and as an herbal medicine, has been reported to reduce the proliferation of prostate cancer cells by mechanisms that are not yet fully understood. Methods: This study was designed to investigate the changes in ginsenoside content in ginseng after treatment with a microwave-irradiation thermal process and to verify the anticancer effects of the extracts. To confirm the anticancer effect of microwave-irradiated processed ginseng (MG), it was tested in three human prostate cancer cell lines (DU145, LNCaP, and PC-3 cells). Involvements of apoptosis and autophagy were assessed using Western blotting. Results: After microwave treatment, the content of ginsenosides Rg1, Re, Rb1, Rc, Rb2, and Rd in the extracts decreased, whereas the content of ginsenosides 20(S)-Rg3, 20(R)-Rg3, Rk1, and Rg5 increased. Antiproliferation results for the human cancer cell lines treated with ginseng extracts indicate that PC-3 cells treated with MG showed the highest activity with an half maximal inhibitory concentration of $48{\mu}g/mL$. We also showed that MG suppresses the growth of human prostate cancer cell xenografts in athymic nude mice as an in vivo model. This growth suppression by MG is associated with the inductions of cell death and autophagy. Conclusion: Therefore, heat processing by microwave irradiation is a useful method to enhance the anticancer effect of ginseng by increasing the content of ginsenosides Rg3, Rg5, and Rk1.

Effect of High Pressure and Steaming Extraction Processes on Ginsenosides Rg3 and Rh2 Contents of Cultured-Root in Wild Ginseng (Panax ginseng C. A. Meyer) (초고압 증숙처리가 산삼배양근의 진세노사이드 Rg3와 Rh2의 함량에 미치는 영향)

  • Choi, Woon-Yong;Lee, Choon-Geun;Seo, Yong-Chang;Song, Chi-Ho;Lim, Hye-Won;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.4
    • /
    • pp.270-276
    • /
    • 2012
  • This study was performed to enhance contents of low molecular weight ginsenoside Rh2 and Rg3 using an ultra high pressure and steaming process in wild cultured-Root in wild ginseng. For selective increase in contents of Rg3 and Rh2 in cultured wild ginseng roots, an ultra high extraction was applied at 500MPa for 20 min which was followed by steaming process at $90^{\circ}C$ for 12 hr. It was revealed that contents of ginsenosides, Rb1, Rb2, Rc and Rd, were decreased with the complex process described above, whereas contents of ginsenoside Rh2 and Rg3 were increased up to 4.918 mg/g and 6.115 mg/g, respectively. In addition, concentration of benzo[${\alpha}$]pyrene in extracts of the cultured wild ginseng roots treated by the complex process was 0.64 ppm but it was 0.78 ppm when it was treated with the steaming process. From the results, it was strongly suggested that low molecular weight ginsenosides, Rh2 and Rg3, are converted from Rb1, Rb2, Rc, and Rd which are easily broken down by an ultra high pressure and steaming process. This results indicate that an ultra high pressure and steaming process can selectively increase in contents of Rg3 and Rh2 in cultured wild ginseng roots and this process might enhance the utilization and values of cultured wild ginseng roots.

Effects of Ginsenosides Rd and Rg1 on Proliferation of B Cells and Antibody Induction (Rd와 Rg1 인삼배당체의 B 임파구 증식 및 항체 유도 효과)

  • Joo, Inkyung;Kim, Hayan;Kim, Jeonghyeon;Shehzad, Omer;Kim, Yeong Shik;Han, Yongmoon
    • YAKHAK HOEJI
    • /
    • v.57 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Induction of effective and increased levels of antibody production may be major points in vaccine development. This is especially the case when the antigenic sources are carbohydrates. Thus, in our Lab various types of formulations such as liposomal and conjugate vaccines have been researched. However, the fastidious formulation process and high costs are a problem. For this reason, there is currently a focus on utilizing immunoadjuvants. In this present study, we tested whether ginsenosides Re (a panaxdiol) and Rg1 (a panaxtriol) from Panax ginseng have immunoadjuvant activity against the cell wall of Candida albicans (CACW). The resulting data showed that Rd and Rg1 caused LPS-treated B lymphocytes to be proliferative. Rd had greater proliferation activity than that of Rg1. In the murine model of antibody production, CACW combined with Rd [CACW/Rd/IFA] or Rg1 [CACW/Rg1/IFA] increased the production of antibodies specific to C. albicans when compared to the antibody production by [CACW/IFA]-induction, which was used as a negative control (P<0.05). In the case of [CFA/Rd/IFA], the antibody production was almost twice as that of the CFA. In addition, formulations containing either had a prolonged antibody inducing activity as compared to the CFA formula. In conclusion, Rd and Rg1 have an immunologic activity, and yet Rd can be a better candidate than Rg1 for a new immunoadjuvant.

Ginsenosides attenuate bioenergetics and morphology of mitochondria in cultured PC12 cells under the insult of amyloid beta-peptide

  • Kwan, Kenneth Kin Leung;Yun, Huang;Dong, Tina Ting Xia;Tsim, Karl Wah Keung
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.473-481
    • /
    • 2021
  • Background: Mitochondrial dysfunction is one of the significant reasons for Alzheimer's disease (AD). Ginsenosides, natural molecules extracted from Panax ginseng, have been demonstrated to exert essential neuroprotective functions, which can ascribe to its anti-oxidative effect, enhancing central metabolism and improving mitochondrial function. However, a comprehensive analysis of cellular mitochondrial bioenergetics after ginsenoside treatment under Aβ-oxidative stress is missing. Methods: The antioxidant activities of ginsenoside Rb1, Rd, Re, Rg1 were compared by measuring the cell survival and reactive oxygen species (ROS) formation. Next, the protective effects of ginsenosides of mitochondrial bioenergetics were examined by measuring oxygen consumption rate (OCR) in PC12 cells under Aβ-oxidative stress with an extracellular flux analyzer. Meanwhile, mitochondrial membrane potential (MMP) and mitochondrial dynamics were evaluated by confocal laser scanning microscopy. Results: Ginsenoside Rg1 possessed the strongest anti-oxidative property, and which therefore provided the best protective function to PC12 cells under the Aβ oxidative stress by increasing ATP production to 3 folds, spare capacity to 2 folds, maximal respiration to 2 folds and non-mitochondrial respiration to 1.5 folds, as compared to Aβ cell model. Furthermore, ginsenoside Rg1 enhanced MMP and mitochondrial interconnectivity, and simultaneously reduced mitochondrial circularity. Conclusion: In the present study, these results demonstrated that ginsenoside Rg1 could be the best natural compound, as compared with other ginsenosides, by modulating the OCR of cultured PC12 cells during oxidative phosphorylation, in regulating MMP and in improving mitochondria dynamics under Aβ-induced oxidative stress.

Accumulation characteristics and correlation analysis of five ginsenosides with different cultivation ages from different regions

  • Xiao, Dan;Yue, Hao;Xiu, Yang;Sun, Xiuli;Wang, YiBo;Liu, ShuYing
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.338-344
    • /
    • 2015
  • Background: Ginseng (the roots of Panax ginseng Meyer) is a well-known traditional Oriental medicine and is now widely used as a health food. It contains several types of ginsenosides, which are considered the major active medicinal components of ginseng. It has recently been reported that the qualitative and quantitative properties of ginsenosides found in ginseng may differ, depending on cultivation regions, ages, species, and so on. Therefore, it is necessary to study these variations with respect to cultivation ages and regions. Methods: In this study, 3-6-yr-old roots of P. ginseng were collected from three different cultivation regions. The contents of five ginsenosides (Rb1, Rd, Rc, Re, and Rgl) were measured by rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry. The Kruskal-Wallis Rank sum test and multiple t test were used for comparative analysis of the data to evaluate the dynamic changes in the accumulation of these ginsenosides affected by cultivation regions and ages. Results: The content and composition of ginsenosides varied significantly among specimens collected from different cultivation regions and having different cultivation ages. For all samples, the content of Rg1 and Re ginsenosides increases with age and this rate of increase is different for each sample. The contents of Rb1, Rc, and Rd varied with cultivation ages in samples from different cultivation regions; especially, Rb1 from a 6-yr-old root showed approximately twofold variation among the samples from three cultivation regions. Furthermore, the content of Rb1 highly correlated with that of Rd (r = 0.89 across all locations and ages). Conclusion: In our study, only the contents of ginsenosides Rg1 and Re were affected by the root age. Ginsenosides Rb1, Rc, and Rd varied widely with ages in samples from different cultivation regions.

PHARMACOKINETICS OF GINSENG COMPOUNDS

  • Chen Shiow-Edith;Sawchuk Ronald J.;Staba E. John
    • Proceedings of the Ginseng society Conference
    • /
    • 1978.09a
    • /
    • pp.55-66
    • /
    • 1978
  • Five ginsenosides $(A_1,\;A_2,\;B_1,\;B_2,\;C)$ and a yellow pigment were isolated from American ginseng stems and leaves. Ginsenoside $A_2,\;B_1,\;B_2$ and C were proven to be identical with Korean ginseng root ginsenoside $Rg_1,$ Rd, Re and $Rb_2,$ respectively. The yellow pigment proved identical with panasenoside isolated from Korean ginseng leaves. Ginsenoside $A_1$, which was also present in American ginseng roots, was not identical to any of the known root (ginsenoside $R_{0}-Rg_{2}$) and leaf (ginsenoside $F_{1}-F_{3}$) Korean ginseng saponins. A gas-liquid chromatographic method was developed to analyze ginsenosides and sapogenins in rabbit plasma and urine samples. Panasenoside and stigmasterol were found to be the best internal standards for ginsenosides and sapogenihs, respectively. Ginsenoside C had a significantly longer half-life, higher plasma protein binding, lower metabolic and renal clearance than ginsenoside $A_1,\;A_2\;and\;B_2$. Ginsenosides were not found in rabbit plasma and urine samples after oral administration. Ginsenoside C had a higher toxicity than ginsenoside $A_2$ after intraperitoneal administration to mice. Toxicity was not observed after oral administration of the ginsenosides.

  • PDF