• Title/Summary/Keyword: Ginseng storage

Search Result 219, Processing Time 0.023 seconds

Evaluation of storage period of fresh ginseng for quality improvement of dried and red processed varieties

  • Zhang, Na;Huang, Xin;Guo, Yun-Long;Yue, Hao;Chen, Chang-Bao;Liu, Shu-Ying
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.290-295
    • /
    • 2022
  • Background: Dried and red ginseng are well-known types of processed ginseng and are widely used as healthy food. The dried and red ginseng quality may vary with the storage period of raw ginseng. Therefore, herein, the effect of the storage period of fresh ginseng on processed ginseng quality was evaluated through multicomponent quantification with statistical analysis. Methods: A method based on ultrahigh performance liquid chromatography coupled to triple quadrupole mass spectrometry in multiple-reaction monitoring mode (UPLC-MRM-MS) was developed for quantitation of ginsenosides and oligosaccharides in dried and red ginseng. Principal component analysis and partial least squares discriminant analysis were conducted to evaluate the dynamic distributions of ginsenosides and oligosaccharides after different storage periods. Results: Eighteen PPD, PPT and OLE ginsenosides and nine reducing and nonreducing oligosaccharides were identified and quantified. With storage period extension, the ginsenoside content in the processed ginseng increased slightly in the first 2 weeks and decreased gradually in the following 9 weeks. The content of reducing oligosaccharides decreased continuously as storage time extending, while that of the nonreducing oligosaccharides increased. Chemical conversions occurred during storage, based on which potential chemical markers for the storage period evaluation of fresh ginseng were screened. Conclusion: According to ginsenoside and oligosaccharide distributions, it was found that the optimal storage period was 2 weeks and that the storage period of fresh ginseng should not exceed 4 weeks at 0 ℃. This study provides deep insights into the quality control of processed ginseng and comprehensive factors for storage of raw ginseng.

Effect of Controlled Atmosphere Storage on the Antioxidative and Cytotoxic Activities of Fresh and Red Ginseng (CA저장이 수삼 및 대삼의 항산화 작용과 항암작용에 미치는 영향)

  • 전병선;정나미
    • Journal of Ginseng Research
    • /
    • v.20 no.3
    • /
    • pp.262-268
    • /
    • 1996
  • 4-year-old fresh ginseng was stored for 12 weeks at 4$^{\circ}C$ under the CA storage and samples were withdrawn after every 1, 2, 3, 4, 6, 8 and 12 weeks for processing of red ginseng. Antloxidative and cytotoxic activities of steamed red ginseng for the quality evaluation are summarized as follows: Reducible activity of water extract to 1, 1-dipenyl-2-picryl hydrazyl increased with increasing storage period. Antioxldative activity of red ginseng did not change in petroleum ether fraction, while it had a tendency to increase In the fractions of ethyl ether and ethyl acetate with increasing storage period. in contrast to fresh ginseng, malonaldehyde formation In heparin mlcrosome of red ginseng processed from fresh ginseng stored In CO2:O2:Nl (6:4:90) with a 0.5% DF-100 immersion condition decreased but was not changed significantly by the period of storage. Cytotoxic activity against cancer cell at a 40 mg/ml concentration of red ginseng slightly increased with an increase in storage period but no effect was observed at the concentration less than 10 mg/ml.

  • PDF

Physicochemical Properties of Freeze Dried Ginseng from the Fresh Ginseng Stored at Low Temperature (저온저장 후 냉동건조한 인삼의 이화학적 특성)

  • 장진규;심기환
    • Journal of Ginseng Research
    • /
    • v.18 no.1
    • /
    • pp.60-65
    • /
    • 1994
  • Fresh ginseng of same grade was stored under the 4$\pm$1$^{\circ}C$ and 87~92% RH for 10 weeks. During the storage, an aliquot amount of the ginseng was drawn, freeze dried and chemical constituents and physicochemical parameters were measured. After 10 weeks of storage drying rate and shrinkage of ginseng were 1520% and 9.04%, respectively, mold growth was seen at week 5 and observed for 51.2% of the ginseng week 10. Amylase activity level was elevated at the early stage of storage and decreased to 5% of initial value at week 5. At week 5, the elevated amylase activity was inconcomitant with the appearance of the mold growth. Crude protein contents were increased and decreased, respectively 5 week post storage. No significant changes in crude fat, crude fiber, ash, total sugar, n-butanol extract and ginsenoside were observed. The content of water-extractable substance showed maximum at week 7 to 8. The value of pH was slightly elevated and reducing sugar was increased during the storage. Key words Ginseng storage, physicochemical properties, drying rate, shrinkage, amylase activity.

  • PDF

Effect of Controlled Atmosphere and Modified Atmosphere Storage on the Chemical Properties of Fresh and Red Ginseng (CA(controlled atmosphere storage) 및 MA(modified atmosphere storage)저장이 수삼 및 홍삼의 화학적 특성에 미치는 영향)

  • 전병선;박채규
    • Journal of Ginseng Research
    • /
    • v.22 no.2
    • /
    • pp.73-81
    • /
    • 1998
  • In order to stabilize the price of fresh ginseng by extension of seasonal variation and marketing structure, and to reduce the cost of production by works of intensive and short term, studies were carried out. As fresh ginseng of 4 years old by the MA (modified atmosphere storage) and CA (controlled atmosphere storage) was stored for 12 week at 4$^{\circ}C$, samples were collected after every 1, 2, 3, 4, 6, 8, 12 weeks for processing red ginseng. Chemical characteristics on ginseng steamed red for the quality evaluation are summarized as follows. The composition of free sugar was consisted of fructose, glucose, sucrose, and maltose in fresh ginseng. And small change was revealed in free sugar composition during the storage period. Glucose and sucrose were largely increased in both treatments of MA (modified atmosphere storage) and CA (controlled atmosphere storage) after 4 week, wherein maltose was decreased. Fifteen different amino acids were identified, and total amount of histamine and arginine were over 40%. Phenylalanine was slightly decreased. As the volatile components in control red ginseng, six different ones including triisopropyl benzene were detected. B-1 ($CO_2$ : $O_2$ : N2=6 : 4.90, DF-100) of CA and E-1 (CPP, DF-100) of MA did not shown triisopropyl benzene as the volatile components. And ${\gamma}$-muurolene, guaiaene, and beta-patchoulene were reduced, but the other components showed the trend of increase.

  • PDF

Physico-Chemical and Microbiological Changes during Storage of Fresh Ginseng (수삼저장중 이화학적 및 기생물학적 변화)

  • 오훈일;노해원;도재호;김상달;홍순근
    • Journal of Ginseng Research
    • /
    • v.5 no.2
    • /
    • pp.99-107
    • /
    • 1981
  • Physical, chemical and microbiological changes were periodically studied during six-month storage of fresh ginseng under N2, CO2 gas or subatmospheric pressure condition. The results were summarized as follows. 1. The moisture contents of fresh ginseng gradually decreased during the first 2-month storage and thereafter generally reached at equillibrium. 2. There was no significant change in the reducing sugar content in 1-month storage, followed by$.$a decrease in between 2-and 3-month storage. Thereafter, the reducing sugar content increased at the end of 4-month storage. 3. The total sugar content increased significantly during the first 3-month storage. Under CO2 and Nr gas storage, the total sugar content gradually decreased after 3-month storage, while no significant change was observed in the samples stored under subatmospheric Pressure. Amylase activity gradually decreased as storage period increased 4. The content of saponin decreased as storage period increased, but ginsengoide Rf, Rd, Rc and Rb2 increased significantly in 1-month storage. 5. Regardless of storage methods, sprouting of ginseng and growth of microorganisms were inhibited in all samples during the first 4-month storage. However, growth of microorganisms was observed in the rhizome and injured areas of ginseng after 5-month storage in the N2 and CO2 gas atmosphere.

  • PDF

Studies on the Changes in the Carbohydrates and Color of Ginseng Extract during the Processing and Storage (인삼엑기스의 제조 및 저장중의 당류와 색도변화에 관한 연구)

  • Park, Myeong-Han;Seong, Hyeon-Sun;Lee, Cheol-Ho
    • Journal of Ginseng Research
    • /
    • v.5 no.2
    • /
    • pp.155-162
    • /
    • 1981
  • This study was aimed at elucidating the composition and color in ginseng extracts during the processing and the long periods of the storage. The types of sugar were determined by using HPLC. In the model study with the fresh ginseng extracts stored at the elevated temperatures between 70-100$^{\circ}C$ for 24-96 hrs, it was shown an overall increase in the concentration of fructose and the overall reduction in the concentrations of sucrose and maltose with increase in the storage temperature and time. The concentration of glucose increased for 24 hrs of storage at all temperatures studied and then decreased with the storage time. Rhamnose in the extracts stored at 80$^{\circ}C$ for 72 hrs was identified and its concentration was increased at the higher storage temperature. The reduction of the concentrations of sugars related to the development of brown color during the processing and the storage.

  • PDF

The Effect of Water Activity on the Storage Stability of Red Ginseng (수분활성도가 홍삼저장성에 미치는 영향)

  • 도재호;노해원
    • Journal of Ginseng Research
    • /
    • v.5 no.2
    • /
    • pp.108-113
    • /
    • 1981
  • Major quality indices for deterioration of red ginseng including oxidation of lipids and change of brown color intensity were periodically investicated during storage of Red Ginseng under various water activity conditions at 3$0^{\circ}C$. The results obtained were summarized as follows. 1. The monolayer moisture contents were 3.25% and 6.3% for red ginseng and red ginseng powder, respectively, and the corresponding water activities were 0.14 and 0.16, respectively. 2. Oxidation of lipids as measured by TBA value increased with an increase in relative humidity and storage period 3. Under storage conditions above 42% R H., brown color intensity also increased in similar fashion to that of oxidation of lipids as relative humidity and storage Period increased 4. It was concluded from above results that water activity of Red Ginseng should be kept less than 0.57 so that red ginseng could Preserve stable qualify.

  • PDF

Nitrate enhances the secondary growth of storage roots in Panax ginseng

  • Kyoung Rok Geem ;Jaewook Kim ;Wonsil Bae ;Moo-Geun Jee ;Jin Yu ;Inbae Jang;Dong-Yun Lee ;Chang Pyo Hong ;Donghwan Shim;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.469-478
    • /
    • 2023
  • Background: Nitrogen (N) is an essential macronutrient for plant growth and development. To support agricultural production and enhance crop yield, two major N sources, nitrate and ammonium, are applied as fertilizers to the soil. Although many studies have been conducted on N uptake and signal transduction, the molecular genetic mechanisms of N-mediated physiological roles, such as the secondary growth of storage roots, remain largely unknown. Methods: One-year-old P. ginseng seedlings treated with KNO3 were analyzed for the secondary growth of storage roots. The histological paraffin sections were subjected to bright and polarized light microscopic analysis. Genome-wide RNA-seq and network analysis were carried out to dissect the molecular mechanism of nitrate-mediated promotion of ginseng storage root thickening. Results: Here, we report the positive effects of nitrate on storage root secondary growth in Panax ginseng. Exogenous nitrate supply to ginseng seedlings significantly increased the root secondary growth. Histological analysis indicated that the enhancement of root secondary growth could be attributed to the increase in cambium stem cell activity and the subsequent differentiation of cambium-derived storage parenchymal cells. RNA-seq and gene set enrichment analysis (GSEA) revealed that the formation of a transcriptional network comprising auxin, brassinosteroid (BR)-, ethylene-, and jasmonic acid (JA)-related genes mainly contributed to the secondary growth of ginseng storage roots. In addition, increased proliferation of cambium stem cells by a N-rich source inhibited the accumulation of starch granules in storage parenchymal cells. Conclusion: Thus, through the integration of bioinformatic and histological tissue analyses, we demonstrate that nitrate assimilation and signaling pathways are integrated into key biological processes that promote the secondary growth of P. ginseng storage roots.

Effect of Controlled Atmosphere and Modified Atmosphere Storage on the Color and Sensual Properties of Fresh and Red Ginseng (CA 및 MA저장이 수삼 및 홍삼의 색상 및 관능적 특성에 미치는 영향)

  • 전병선;박채규
    • Journal of Ginseng Research
    • /
    • v.22 no.2
    • /
    • pp.82-90
    • /
    • 1998
  • In order to stabilize the price of fresh ginseng by extension of seasonal variation and marketing structure, and to reduce the cost of production by works of intensive and short term, studies were carried out. As fresh ginseng of 4 years old by the MA and CA was stored for 12 week at 4$^{\circ}C$, samples were collected after every 1, 2, 3, 4, 6, 8, 12 weeks for processing red ginseng. Color and Sensual characteristics on ginseng steamed red for the quality evaluation are summarized as follows. For the time course of storage with red ginseng, which was processed from fresh one after various treatments, L and b values were decreased, however a value was increased. In particular, absorbance was step-wisely increased. Turbidity was somewhat increased, and non-treatment of preservative were shown 2 times higher of absorbance. Extraction ratio of ethanol-soluble extractives slightly increased by the preservation methods, and as storage period was passed. CA storage and preservative treat merit versus MA and non-preservative treatment gave much stability in ginseng quality. In the sensual characters, sour taste and sweet taste were increased, but fresh taste and rice scorched taste were decreased. Bitter taste was not much changed until end of storage. CA was shown smaller differences than MA in the pH change. Addition of preservative extended the storage time.

  • PDF

Effects of Storage Temperature on Quality of Fresh Ginseng during Distribution (수삼의 저장온도가 유통 중 품질에 미치는 영향)

  • Lee, Ji Hyun;Chio, Ji Weon;Hong, Yoon Pyo;Kim, Geum Soog
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.6
    • /
    • pp.431-438
    • /
    • 2015
  • Background : This study was conducted to determine out the effect of storage temperature on the quality of fresh ginseng (Panax ginseng C. A. Meyer) during distribution. Methods and Results : Fresh ginseng was washed, packed in $30{\mu}m$ low density polyethylene (LDPE) film, then stored at 0, -2 and $-4^{\circ}C$. After 4 weeks of storage, ginseng was then stored at $5^{\circ}C$, as a simulation of the distribution process. Ginseng stored at $-4^{\circ}C$ showed higher respiration rate, ethylene production and electrolyte conductivity during the distribution phase than those stored at 0 and $-2^{\circ}C$. Decay and browning rate rapidly increased following 3 weeks of distribution in samples stored $-4^{\circ}C$. However ginseng stored $-2^{\circ}C$, which is below freezing point, for 4 weeks did not show the physiological change or quality deterioration. Ginsenoside contents decreased during storage for all plant, but did not differ significantly between storage temperatures. Conclusions : Storage at temperatures below $-2^{\circ}C$ can negatively affect respiratory characteristics and electrolyte leakage and increase quality deterioration and decay rates during distribution.